
[Reprinted fromAT&T Bell Laboratories Technical Journal63, No. 8 Part 2 (October, 1984), pp. 1897-
1910. The current implementation of the stream mechanisms differs slightly from that described here, but
the structure remains the same. Copyright © 1984 AT&T.]

A Stream Input-Output System

Dennis M. Ritchie

ABSTRACT

In a new version of the Unix operating system, a flexible coroutine-based design
replaces the traditional rigid connection between processes and terminals or networks.
Processing modules may be inserted dynamically into the stream that connects a user’s
program to a device. Programs may also connect directly to programs, providing inter-
process communication.

Introduction

The part of the Unix operating system that deals with terminals and other character devices has
always been complicated. In recent versions of the system it has become even more so, for two reasons.

1) Network connections require protocols more ornate than are easily accommodated in the existing
structure. A notion of ‘‘line disciplines’’ was only partially successful, mostly because in the tradi-
tional system only one line discipline can be active at a time.

2) The fundamental data structure of the traditional character I/O system, a queue of individual charac-
ters (the ‘‘clist’’), is costly because it accepts and dispenses characters one at a time. Attempts to
avoid overhead by bypassing the mechanism entirely or by introducingad hocroutines succeeded in
speeding up the code at the expense of regularity.

Patchwork solutions to specific problems were destroying the modularity of this part of the system. The
time was ripe to redo the whole thing. This paper describes the new organization.

The system described here runs on about 20 machines in the Information Sciences Research Division
of Bell Laboratories. Although it is being investigated by other parts of Bell Labs, it is not generally avail-
able.

Overview

This section summarizes the nomenclature, components, and mechanisms of the new I/O system.

Streams

A streamis a full-duplex connection between a user’s process and a device or pseudo-device. It con-
sists of several linearly connected processing modules, and is analogous to a Shell pipeline, except that data
flows in both directions. The modules in a stream communicate almost exclusively by passing messages to
their neighbors. Except for some conventional variables used for flow control, modules do not require
access to the storage of their neighbors. Moreover, a module provides only one entry point to each neigh-
bor, namely a routine that accepts messages.

At the end of the stream closest to the process is a set of routines that provide the interface to the rest
of the system. A user’swrite and I/O control requests are turned into messages sent to the stream, andread
requests take data from the stream and pass it to the user. At the other end of the stream is a device driver
module. Here, data arriving from the stream is sent to the device; characters and state transitions detected
by the device are composed into messages and sent into the stream towards the user program. Intermediate



- 2 -

modules process the messages in various ways.

The two end modules in a stream become connected automatically when the device is opened; inter-
mediate modules are attached dynamically by request of the user’s program. Stream processing modules
are symmetrical; their read and write interfaces are identical.

Queues

Each stream processing module consists of a pair ofqueues,one for each direction. A queue com-
prises not only a data queue proper, but also two routines and some status information. One routine is the
put procedure,which is called by its neighbor to place messages on the data queue. The other, theservice
procedure,is scheduled to execute whenever there is work for it to do. The status information includes a
pointer to the next queue downstream, various flags, and a pointer to additional state information required
by the instantiation of the queue. Queues are allocated in such a way that the routines associated with one
half of a stream module may find the queue associated with the other half. (This is used, for example, in
generating echos for terminal input.)

Message blocks

The objects passed between queues are blocks obtained from an allocator. Each contains aread
pointer,a write pointer,and alimit pointer, which specify respectively the beginning of information being
passed, its end, and a bound on the extent to which the write pointer may be increased.

The header of a block specifies its type; the most common blocks contain data. There are also con-
trol blocks of various kinds, all with the same form as data blocks and obtained from the same allocator.
For example, there are control blocks to introduce delimiters into the data stream, to pass user I/O control
requests, and to announce special conditions such as line break and carrier loss on terminal devices.

Although data blocks arrive in discrete units at the processing modules, boundaries between them are
semantically insignificant; standard subroutines may try to coalesce adjacent data blocks in the same queue.
Control blocks, however, are never coalesced.

Scheduling

Although each queue module behaves in some ways like a separate process, it is not a real process;
the system saves no state information for a queue module that is not running. In particular queue process-
ing routines do not block when they cannot proceed, but must explicitly return control. A queue may be
enabledby mechanisms described below. When a queue becomes enabled, the system will, as soon as con-
venient, call its service procedure entry, which removes successive blocks from the associated data queue,
processes them, and places them on the next queue by calling its put procedure. When there are no more
blocks to process, or when the next queue becomes full, the service procedure returns to the system. Any
special state information must be saved explicitly.

Standard routines make enabling of queue modules largely automatic. For example, the routine that
puts a block on a queue enables the queue service routine if the queue was empty.

Flow Control

Associated with each queue is a pair of numbers used for flow control. A high-water mark limits the
amount of data that may be outstanding in the queue; by convention, modules do not place data on a queue
above its limit. A low-water mark is used for scheduling in this way: when a queue has exceeded its high-
water mark, a flag is set. Then, when the routine that takes blocks from a data queue notices that this flag is
set and that the queue has dropped below the low-water mark, the queue upstream of this one is enabled.

Simple Examples

Figure 1 depicts a stream device that has just been opened. The top-level routines, drawn as a pair of
half-open rectangles on the left, are invoked by users’readandwrite calls. The writer routine sends mes-
sages to the device driver shown on the right. Data arriving from the device is composed into messages
sent to the top-level reader routine, which returns the data to the user process when it executesread.



- 3 -

user
write

device
out

device
in

user
read

Figure 1. Configuration after device open.

Figure 2 shows an ordinary terminal connected by an RS-232 line. Here a processing module (the
pair of rectangles in the middle) is interposed; it performs the services necessary to make terminals usable,
for example echoing, character-erase and line-kill, tab expansion as required, and translation between
carriage-return and new-line. It is possible to use one of several terminal handling modules. The standard
one provides services like those of the Seventh Edition system [1]; another resembles the Berkeley ‘‘new
tty’’ driver [2].

user
write

tty out
device

out
device

in
tty in

user
read

Figure 2. Configuration for normal terminal attachment.

The processing modules in a stream are thought of as a stack whose top (shown here on the left) is
next to the user program. Thus, to install the terminal processing module after opening a terminal device,
the program that makes such connections executes a ‘‘push’’ I/O control call naming the relevant stream
and the desired processing module. Other primitives pop a module from the stack and determine the name
of the topmost module.

Most of the machines using the version of the operating system described here are connected to a net-
work based on the Datakit packet switch [3]. Although there is a variety of host interfaces to the network,
most of ours are primitive, and require network protocols to be conducted by the host machine, rather than
by a front-end processor. Therefore, when terminals are connected to a host through the network, a setup
like that shown in Fig. 3 is used; the terminal processing module is stacked on the network protocol mod-
ule. Again, there is a choice of protocol modules, both a current standard and an older protocol that is
being phased out.

user
write

tty out proto out
device

out
device

in
proto intty in

user
read

Figure 3. Configuration for network terminals.

A common fourth configuration (not illustrated) is used when the network is used for file transfers or
other purposes when terminal processing is not needed. It simply omits the ‘‘tty’’ module and uses only
the protocol module. Some of our machines, on the other hand, have front-end processors programmed to
conduct standard network protocol. Here a connection for remote file transfer will resemble that of Fig. 1,
because the protocol is handled outside the operating system; likewise network terminal connections via the
front end will be handled as shown in Fig. 2.



- 4 -

Messages

Most of the messages between modules contain data. The allocator that dispenses message blocks
takes an argument specifying the smallest block its caller is willing to accept. The current allocator main-
tains an inventory of blocks 4, 16, 64, and 1024 characters long. Modules that allocate blocks choose a size
by balancing space loss in block linkage overhead against unused space in the block. For example, the
top-level write routine requests either 64- or 1024-character blocks, because such calls usually transmit
many characters; the network input routine allocates 16-byte blocks because data arrives in packets of that
size. The smallest blocks are used only to carry arguments to the control messages discussed below.

Besides data blocks, there are also several kinds of control messages. The following messages are
queued along with data messages, in order to ensure that their effect occurs at the appropriate time.

BREAK is generated by a terminal device on detection of a line break signal. The standard termi-
nal input processor turns this message into an interrupt request. It may also be sent to a
terminal device driver to cause it to generate a break on the output line.

HANGUP is generated by a device when its remote connection drops. When the message arrives at
the top level it is turned into an interrupt to the process, and it also marks the stream so
that further attempts to use it return errors.

DELIM is a delimiter in the data. Most of the stream I/O system is prepared to provide true
streams, in which record boundaries are insignificant, but there are various situations in
which it is desirable to delimit the data. For example, terminal input is read a line at a
time; DELIM is generated by the terminal input processor to demarcate lines.

DELAY tells terminal drivers to generate a real-time delay on output; it allows time for slow ter-
minals react to characters previously sent.

IOCTL messages are generated by users’ioctl system calls. The relevant parameters are gath-
ered at the top level, and if the request is not understood there, it and its parameters are
composed into a message and sent down the stream. The first module that understands
the particular request acts on it and returns a positive acknowledgement. Intermediate
modules that do not recognize a particularIOCTL request pass it on; stream-end modules
return a negative acknowledgement. The top-level routine waits for the acknowledge-
ment, and returns any information it carries to the user.

Other control messages are asynchronous and jump over queued data and non-priority control messages.

IOCACK

IOCNAK acknowledgeIOCTL messages. The device end of a stream must respond with one of
these messages; the top level will eventually time out if no response is received.

SIGNAL messages are generated by the terminal processing module and cause the top level to
generate process signals such asquit andinterrupt.

FLUSH messages are used to throw away data from input and output queues after a signal or on
request of the user.

STOP

START messages are used by the terminal processor to halt and restart output by a device, for
example to implement the traditional control-S/control-Q (X-on/X-off) flow control
mechanism.

Queue Mechanisms and Interfaces

Associated with each direction of a full-duplex stream module is a queue data structure with the fol-
lowing form (somewhat simplified for exposition).



- 5 -

struct queue {
int flag; /* flag bits */
void (*putp)(); /* put procedure */
void (*servp)(); /* service procedure */
struct queue *next; /* next queue downstream */
struct block *first; /* first data block on queue */
struct block *last; /* last data block on queue */
int hiwater; /* max characters on queue */
int lowater; /* wakeup point as queue drains */
int count; /* characters now on queue */
void *ptr; /* pointer to private storage */

};

The flag word contains several bits used by low-level routines to control scheduling: they show whether
the downstream module wishes read data, or the upstream module wishes to write, or the queue is already
enabled. One bit is examined by the upstream module; it tells whether this queue is full.

The first and last members point to the head and tail of a singly-linked list of data and control
blocks that form the queue proper;hiwater andlowater are initialized when the queue is created, and
when compared againstcount , the current size of the queue, determine whether the queue is full and
whether it has emptied sufficiently to enable a blocked writer.

Theptr member stores an untyped pointer that may be used by the queue module to keep track of
the location of storage private to itself. For example, each instantiation of the terminal processing module
maintains a structure containing various mode bits and special characters; it stores a pointer to this structure
here. The type ofptr is artificial. It should be a union of pointers to each possible module state structure.

Stream processing modules are written in one of two general styles. In the simpler kind, the queue
module acts nearly as a classical coroutine. When it is instantiated, it sets its put procedureputp to a
system-supplied default routine, and supplies a service procedureservp . Its upstream module disposes of
blocks by calling this module’sputp routine, which places the block on this module’s queue (by manipu-
lating thefirst andlast pointers.) The standard put procedure also enables the current module; a short
time later the current module’s service procedureservp is called by the scheduler. In pseudo-code, the
outline of a typical service routine is:

service(q)
struct queue *q

while (q is not empty and q->next is not full) {
get a block from q
process message block
call q->next->putp to dispose of

new or transformed block
}

This mechanism is appropriate in cases in which messages can be processed independently of each other.
For example, it is used by the terminal output module. All the scheduling details are taken care of by stan-
dard routines.

More complicated modules need finer control over scheduling. A good example is terminal input.
Here the device module upstream produces characters, usually one at a time, that must be gathered into a
line to allow for character erase and kill processing. Therefore the stream input module provides a put pro-
cedure to be called by the device driver or other module downstream from it; here is an outline of this rou-
tine and its accompanying service procedure:



- 6 -

putproc(q, bp)
struct queue *q; struct block *bp

put bp on q
echo characters in bp’s data
if (bp’s data contains new-line or carriage return)

enable q

service(q)
struct queue *q

take data from q until new-line or carriage return,
processing erase and kill characters

call q->next->putp to hand line to upstream queue
call q->next->putp with DELIM message

The put procedure generates the echo characters as promptly as possible; when the terminal module is
attached to a device handler, they are created during the input interrupt from the device, because the put
procedure is called as a subroutine of the handler. On the other hand, line-gathering and erase and kill pro-
cessing, which can be lengthy, are done during the service procedure at lower priority.

Connection with the Rest of the System

Although all the drivers for terminal and network devices, and all protocol handlers, were rewritten,
only minor changes were required elsewhere in the system. Character devices and a character device
switch, as described by Thompson [4], are still present. A pointer in the character device switch structure,
if null, causes the system to treat the device as always; this is used for raw disk and tape, for example. If
not null, it points to initialization information for the stream device; when a stream device is opened, the
queue structure shown in Fig. 1 is created, using this information, and a pointer to the structure naming the
stream is saved (in the ‘‘inode table’’).

Subsequently, when the user process makesread, write, ioctl, or closecalls, presence of a non-null
stream pointer directs the system to use a set of stream routines to generate and receive queue messages;
these are the ‘‘top-level routines’’ referred to previously.

Only a few changes in user-level code are necessary, most because opening a terminal puts it in the
‘‘very raw’’ mode shown in Fig. 1. In order to install the terminal-processing handler, it is necessary for
programs such asinit to execute the appropriateioctl call.

Interprocess Communication

As previously described, the stream I/O system constitutes a flexible communication path between
user processes and devices. With a small addition, it also provides a mechanism for interprocess communi-
cation. A special device, the ‘‘pseudo-terminal’’ orPT, connects processes.PT files come in even-odd
pairs; data written on the odd member of the pair appears as input for the even member, and vice versa.
The idea is not new; it appears in Tenex [5] and its successors, for example. It is analogous to pipes, and
especially to named pipes [6].PT files differ from traditional pipes in two ways: they are full-duplex, and
control information passes through them as well as data. They differ from the usual pseudo-terminal files
[2] by not having any of the usual terminal processing mechanisms inherently attached to them; they are
pure transmitters of control and data messages.PT files are adequate for setting up a reasonably general
mechanism for explicit process communication, but by themselves are not especially interesting.

A specialmessagemodule provides more intriguing possibilities. In one direction, the message pro-
cessor takes control and data messages, such as those discussed above, and transforms them into data
blocks starting with a header giving the message type, and followed by the message content. In the other
direction, it parses similarly-structured data messages and creates the corresponding control blocks. Figure
4 shows a configuration in which a user process communicates through the terminal module, aPT file pair,
and the message module with another user-level process that simulates a device driver. BecausePT files are
transparent, and the message module maps bijectively between device-process data and stream control



- 7 -

device
process

mesg
pt

pt
tty in

user
process

tty out

mesg

Figure 4. Configuration for device simulator.

messages, the device simulator may be completely faithful up to details of timing. In particular, user’sioctl
requests are sent to the device process and are handled by it, even if they are not understood by the operat-
ing system.

The usefulness of this setup is not so much to simulate new devices, but to provide ways for one pro-
gram to control the environment of another. Pike [6] shows how these mechanisms are used to create mul-
tiple virtual terminals on one physical terminal. In another application, inter-machine connections in which
a user on one computer logs into another make use of the message module. Here theioctl requests gener-
ated by programs on the remote machine are translated by this module into data messages that can be sent
over the network. The local callout program translates them back into terminal control commands.

Evaluation

My intent in rewriting the character I/O system was to improve its structure by separating functions
that had been intertwined, and by allowing independent modules to be connected dynamically across well-
defined interfaces. I also wanted to make the system faster and smaller. The most difficult part of the pro-
ject was the design of the interface. It was guided by these decisions:

1) It seemed to be necessary for efficiency that the objects passed between modules be references to
blocks of data. The most important consequences of this principle, and those that proved deciding,
are that data need not be copied as it passes across a module interface, and that many characters can
be handled during a single intermodule transmission. Another effect, undesirable but accepted, is
that each module must be prepared to handle discrete chunks of data of unpredictable size. For
example, a protocol that expects records containing (say) an 8-byte header must be prepared to paste
together smaller data blocks and split a block containing both a header and following data. A related,
although not necessarily consequent, decision was to make the code assume that the data is address-
able.

2) I decided, with regret, that each processing module could not act as an independent process with its
own call record. The numbers seemed against it: on large systems it is necessary to allow for as
many as 1000 queues, and I saw no good way to run this many processes without consuming inordi-
nate amounts of storage. As a result, stream server procedures are not allowed to block awaiting
data, but instead must return after saving necessary status information explicitly. The contortions
required in the code are seldom serious in practice, but the beauty of the scheme would increase if
servers could be written as a simple read-write loop in the true coroutine style.

3) The characteristic feature of the design�the server and put procedures�was the most difficult to work
out. I began with a belief that the intermodule interface should be identical in the read and write
directions. Next, I observed that a pure call model (put procedure only) would not work; queueing
would be necessary at some point. For example, if thewrite system entry called through the terminal
processing module to the device driver, the driver would need to queue characters internally lest out-
put be completely synchronous. On the other hand, a pure queueing model (service procedure only;
upstream modules always place their data in an input queue) also appeared impractical. As discussed



- 8 -

above, a module (for example terminal input) must often be activated at times that depend on its
input data.

After considerable churning of details, the model presented here emerged. In general its performance
by various measures lives up to hopes.

The improvement in modularity is hard to measure, but seems real; for example, the number of
included header files in stream modules drops to about one half of those required by similar routines in the
base system (4.1 BSD). Certainly stream modules may be composed more freely than were the ‘‘line disci-
plines’’ of older systems.

The program text size of the version of the operating system described here is about 106 kilobytes on
the VAX; the base system was about 130KB. The reduction was achieved by rewriting the various device
drivers and protocols and eliminating the Seventh Edition multiplexed files [1], most (though not all) of
whose functions are subsumed by other mechanisms. On the other hand, the data space has increased. On
a VAX 11/750 configured for 32 users about 32KB are used for storage of the structures for streams,
queues, and blocks. The traditional character lists seem to require less; similar systems from Berkeley and
AT&T use between 14 and 19KB. The tradeoff of program for data seems desirable.

Proper time comparisons have not been made, because of the difficulty of finding a comparable con-
figuration. On a VAX 11/750, printing a large file on a directly-connected terminal consumes 346
microseconds per character using the system described here; this is about 10 per cent slower than the base
system. On the other hand, that system’s per-character interrupt routine is coded in assembly language, and
the rest of its terminal handler is replete with nonportable interpolated assembly code; the current system is
written completely in C. Printing the same file on a terminal connected through a primitive network inter-
face requires 136 microseconds per character, half as much as the older network routines. Pike [7] observes
that among the three implementations of Blit connection software, the one based on the stream system is
the only one that can download programs at anything approaching line speed through a 19.2 Kbps connec-
tion. In general I conclude that the new organization never slows comparable tasks much, and that consid-
erable speed improvements are sometimes possible.

Although the new organization performs well, it has several peculiarities and limitations. Some of
them seem inherent, some are fixable, and some are the subject of current work.

I/O control calls turn into messages that require answers before a result can be returned to the user.
Sometimes the message ultimately goes to another user-level process that may reply tardily or never. The
stream is write-locked until the reply returns, in order to eliminate the need to determine which process gets
which reply. A timeout breaks the lock, so there is an unjustified error return if a reply is late, and a long
lockup period if one is lost. The problem can be ameliorated by working harder on it, but it typifies the dif-
ficulties that turn up when direct calls are replaced by message-passing schemes.

Several oddities appear because time spent in server routines cannot be assigned to any particular
user or process. It is impossible, for example, for devices to support privilegedioctl calls, because the
device has no idea who generated the message. Accounting and scheduling become less accurate; a short
census of several systems showed that between 4 and 8 per cent of non-idle CPU time was being spent in
server routines. Finally, the anonymity of server processing most certainly makes it more difficult to mea-
sure the performance of the new I/O system.

In its current form the stream I/O system is purely data-driven. That is, data is presented by a user’s
write call, and passes through to the device; conversely, data appears unbidden from a device and passes to
the top level, where it is picked up byreadcalls. Wherever possible flow control throttles down fast gener-
ators of data, but nowhere except at the consumer end of a stream is there knowledge of precisely how
much data is desired. Consider a command to execute possibly interactive program on another machine
connected by a stream. The simplest such command sets up the connection and invokes the remote pro-
gram, and then copies characters from its own standard input to the stream, and from the stream to its stan-
dard output. The scheme is adequate in practice, but breaks when the user types more than the remote pro-
gram expects. For example, if the remote program reads no input at all, any typed-ahead characters are sent
to the remote system and lost. This demonstrates a problem, but I know of no solution inside the stream
I/O mechanism itself; other ideas will have to be applied.

Streams are linear connections; by themselves, they support no notion of multiplexing, fan-in or fan-



- 9 -

out. Except at the ends of a stream, each invocation of a module has a unique ‘‘next’’ and ‘‘previous’’
module. Two locally-important applications of streams testify to the importance of multiplexing: Blit ter-
minal connections, where the multiplexing is done well, though at some performance cost, by a user pro-
gram, and remote execution of commands over a network, where it is desired, but not now easy, to separate
the standard output from error output. It seems likely that a general multiplexing mechanism could help in
both cases, but again, I do not yet know how to design it.

Although the current design provides elegant means for controlling the semantics of communication
channels already opened, it lacks general ways of establishing channels between processes. ThePT files
described above are just fine for Blit layers, and work adequately for handling a few administrator-
controlled client-server relationships. (Yes, we have multi-machine mazewar.) Nevertheless, better nam-
ing mechanisms are called for.

In spite of these limitations, the stream I/O system works well. Its aim was to improve design rather
than to add features, in the belief that with proper design, the features come cheaply. This approach is ardu-
ous, but continues to succeed.

References

1. Unix Programmers’s Manual, Seventh Edition,Bell Laboratories, Murray Hill, NJ, (January, 1979).

2. Unix Programmer’s Manual, Virtual VAX-11 Version,University of California, Berkeley (June
1981).

3. A. G. Fraser, ‘‘Datakit--A Modular Network for Synchronous and Asynchronous Traffic,’’Proc. Int.
Conf. on Communication,Boston, MA (June 1979).

4. K. Thompson, ‘‘The Unix Time-sharing System--Unix Implementation,’’ B.S.T.J.57 No 6, (July-
Aug 1978), pp. 1931-1946.

5. D.G. Bobrow, J.D. Burchfiel, D.L. Murphy, and R.S Tomlinson, ‘‘Tenex--a Paged Time Sharing
System for the PDP-10,’’ C. ACM15No. 3, (March 1972), pp. 135-143.

6. T.A. Dolotta, S.B. Olsson,, and A.G.Petrucelli,Unix User’s Manual, Release 3.0,Bell Laboratories,
Murray Hill, NJ (June 1980).

7. R. Pike, ‘The Blit: A Multiplexed Graphics Terminal,’’ AT&T Tech. J.63 No. 8 Part 2, October
1984.


