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SUMMARY

When processes wish to communicate, they must first establish communication. The stream mechan-
isms introduced in the Eighth Edition Unix system,1 which have now become part of AT&T’s Unix
System V,2 provide a flexible way for processes to conduct an already-begun conversation with devices
and with each other: an existing stream connection is named by a file descriptor, and the usual read,
write, and I/O control requests apply. Processing modules may be inserted dynamically into a stream
connection, so network protocols, terminal processing, and device drivers separate cleanly. However,
these mechanisms, by themselves, do not provide a general way to create channels between processes.

Simple extensions provide new ways of establishing communication. In our system, the traditional
Unix IPC mechanism, the pipe, is a cross-connected stream.

A generalisation of file-system mounting associates a stream with a named file. When the file is
opened, operations on the file are operations on the stream.

Open files may be passed from one process to another over a pipe.
These low-level mechanisms allow construction of flexible and general routines for connecting local

and remote processes.

INTRODUCTION

The Ninth Edition version of Unix operating system is used in the Information Sci-
ences Research Division of AT&T Bell Laboratories, and at a few sites elsewhere. It is
named, by our custom, after its manual.

The work reported here describes convenient ways for programs to establish communi-
cation with unrelated processes, on the same or different machines. In particular, we
study how to design the interface that programs use to request remote and local services,
how the operating system can aid connection to the services, and how to make it easy to
write the servers. Typical problems we hope to simplify are: what code has to be put
into a mailer program to send mail to a user on another machine? How does a remote-
login program establish contact with its destination system? When a remote file system
is mounted, what operations must be performed to find its server? Is there a uniform way
of turning the name of a service into a connection to the service itself?

The communication we are interested in is conducted by ordinary read and write calls,
occasionally supplemented by I/O control requests, so that it resembles—and, where pos-
sible, is indistinguishable from—I/O to files. Moreover, we wish to commence communi-
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cation in ways that resemble the opening of ordinary files. Thus, our approach is, in net-
work parlance, connection-oriented. That is, it proposes routines that turn a client’s string
naming a service into a file descriptor that connects to the server. In our examples, the
connection usually involves a reliable, duplex channel over which data can be sent
rapidly, while the establishment of the channel may be moderately expensive. Although
this approach implies a certain bias, it is not so limiting as it may seem; for example, the
‘server’ may be a program that broadcasts, or sends datagram packets on a particular net-
work.

RECAPITULATION

The Eighth Edition system introduced a new way of communicating with terminal and
network devices,1 and a generalisation of the internal interface to the file system.3, 4

Because the new mechanisms build on these ideas, we review the nomenclature and
mechanisms of our I/O and file systems.

Streams

A stream is a full-duplex connection between a process and a device or another pro-
cess. It consists of several linearly connected processing modules, and is analogous to a
Shell pipeline, except that data flows in both directions. The modules in a stream com-
municate by passing messages to their neighbours. A module provides only one entry
point to each neighbour, namely a routine that accepts messages.

At the end of the stream closest to the process is a set of routines that provide the
interface to the rest of the system. A user’s write and I/O control requests are turned into
messages sent along the stream, and read requests take data from the stream and pass it
to the user. At the other end of the stream is either a device driver module, or another
process. Data arriving from the stream at a driver module is transmitted to the device,
and data and state transitions detected by the device are composed into messages and sent
into the stream towards the user process. Pipes, which are streams connecting processes,
are bidirectional; a writer at either end generates stream messages that are picked up by
the reader at the other.

Intermediate modules process messages in various ways. They come in pairs, for han-
dling messages in each of the two directions, and their interfaces on the two sides are
identical.

The end modules in a device stream become connected automatically when the process
opens the device; streams between processes are created by a pipe call. Intermediate
modules are attached dynamically by request of the user’s program. They are addressed
like a stack with its top close to the process, so installing one is called ‘pushing’ a new
module. Stream modules are part of the operating system kernel, but because they
transmit messages, and streams can connect processes, it is plausible to transmit a stream
through a user program.

For example, Figure 1 shows a stream device that has just been opened. The top-level
routines, drawn as a pair of half-open rectangles on the left, are invoked by users’ read
and write calls. The writer routine sends messages to the device driver shown on the
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Figure 3. A pipe.

right. Data arriving from the device becomes messages sent to the top-level reader rou-
tine, which returns the data to the user process when it executes read .

Figure 2 shows a stream with intermediate modules. This arrangement might be used
when a terminal is connected to the computer through a network. The leftmost inter-
mediate module carries out processing (such as character-erase and line-kill) needed for
terminals, while the rightmost intermediate module does the flow- and error-control proto-
col needed to interface to the network.

Finally, Figure 3 shows the connections for a pipe.

File Systems

Weinberger3 generalised the Unix file system by identifying a small set of primitive
operations on files (read, write, look up name, truncate, get status, etc.: a total of 11) and
modifying the mount request so that it specifies a file system type and, where appropriate,
a stream. When file operations are requested, the calls to the underlying primitives are
routed through a switch table indexed by the type. Where the standard file system type
performs operations directly on a disk, a second type generates remote procedure calls
across the associated stream. At the other end of the stream, which usually goes over a
network to another machine, is a server process that answers the calls to read and write
data and perform the other operations. This scheme thus provides a remote file system;
its structure resembles that used by others, for example AT&T’s RFS5 and Sun Microsys-
tems’ NFS.6

Killian4 added a file system type that appears to be a directory containing the names
(process ID numbers) of currently running processes. Once a process file is opened, its
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memory may be read or written, and control operations can start it or stop it. This
simplifies the construction of sophisticated debuggers, for example Cargill’s process-
inspector pi .7

Generalised file systems can support interesting forms of interprocess communication,
whereby merely naming a file entails significant computation; see for example discussions
of the Face Server8 or Sun Microsystems’ Automounter.9 In this paper we will discuss
less exotic uses of generalised mounting.

ESTABLISHING COMMUNICATION

Traditional Unix systems provide few ways for a process to establish communication
with another. The oldest one, the pipe, has proved astonishingly valuable despite its limi-
tations, and indeed remains central in the design we shall describe. A pipe is a communi-
cation channel created in a particular process, an end of which may be passed to descen-
dants of that process. Because it has no externally-visible name, it is useless for com-
municating between unrelated processes.

More recently, AT&T’s System V has offered a variety of communication mechanisms
including semaphores, messages, and shared memory. They are all useful in certain cir-
cumstances, but programs that use them are all special-purpose; they know that they are
communicating over a certain kind of channel, and must use special calls and techniques.
System V also provides named pipes (FIFOs). Their names reside in the file system, and
ordinary I/O operations apply to them. They can provide a convenient place for
processes to meet. However, because the messages of all writers are intermingled, writers
on the same FIFO must observe a carefully designed, application-specific protocol when
using them. Moreover, traditional FIFOs supply only one-way communication; to receive
a reply from a process reached through a FIFO, a return channel must be constructed
somehow.

Berkeley’s 4.2 BSD system10 introduced sockets (communication connection points)
that exist in domains (naming spaces). The design is powerful enough to provide most of
the needed facilities, but is uncomfortable in various ways. For example, unless exten-
sive libraries are used, creating a new domain implies additions to the kernel. Consider
the problem of adding a ‘phone’ domain, in which the addresses are telephone numbers.
Should complicated negotiations with various kinds of automatic dialers be added to the
kernel? If not, how can the required code be invoked in user mode when a program calls
4.2 BSD’s connect primitive? One group, for example, wanted to add dial-up Internet
communication to the BSD system.11 Their solution adds a pseudo-device to the kernel,
and generates messages on this device when the networking code detects attempts to send
packets to an unconnected destination. A user-level daemon process reading the pseudo-
device dials the other system, then adjusts the kernel’s routing tables to use the serial
line.

Another problem with the socket interface is that it exposes peculiarities of the domain;
various domains support very different kinds of name (for example, 32-bit Internet
address versus alphabetic string), and it is difficult to deal with the names in a general
way. Similarly, the details of option processing and other aspects of each domain’s pro-
tocols complicate an interface that attempts generality.
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NEW SYSTEM MECHANISMS

Two small additions to the operating system allowed us to build a variety of communi-
cation mechanisms, which will be described below.

Generalised Mounting

Traditionally, the mount request attaches a disk containing a new piece of the file sys-
tem tree at a leaf of the existing structure. In the Ninth Edition, it takes the form

mount(type, fd, name, flag);

in which type identifies the kind of file system, fd is a file descriptor, name is a string
identifying a file, and flag may specify a few options. Like its original version, this call
attaches a new file system structure atop the file name in the existing file hierarchy. The
operating system gains access to the contents of newly-attached file tree by communicat-
ing over the descriptor fd, according to a protocol appropriate for the new file system
type. For example, ordinary disk volumes have type ordinary, and the file descriptor is
the special file for the disk, while remote file systems use type remote, and the descriptor
refers to a stream connection to a server that understands the appropriate RPC messages.
Some types are handled entirely internally; for example, the proc type ignores the file
descriptor.

We added a new, very simple, file system type. Its mount request merely attaches the
file descriptor (which must be a stream) to the file name. Subsequently, when processes
open and do I/O on that file, their requests refer to the stream mounted on the file.
Often, the stream is one end of a pipe created by a server process, but it can equally well
be a connection to a device, or a network connection to a process on another machine.
The effect is similar to a System V FIFO that has already been opened by a server, but
more general: communication is full-duplex, the server can be on another machine, and
(because the connection is a stream), intermediate processing modules may be installed.

Passing Files

By itself, a mounted stream shares an important difficulty of the FIFO; several
processes attempting to use it simultaneously must somehow cooperate. Another addition
facilitates this cooperation: an open file may be passed from one process to another across
a pipe connection. The primitives may be written

sendfile(wpipefd, fd);

in the sender process, and

(fd1, info) = recvfile(rpipefd);

in the receiver. By using sendfile, the sender transmits a copy of its file descriptor fd
over the pipe to the receiver; when the receiver accepts it by recvfile, it gains a new open
file denoted by fd1. (Other information, such as the user- and group-id of the sender, is
also passed.)

Descriptor-passing may be used only locally, over a pipe; we do not attempt to extend
it to remote systems. The main justification for this limitation is that we do not, in gen-
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eral, control the characteristics and protocols of the remote systems. Passing references
to open files is a highly system-dependent notion, and we chose not to rely on it except
locally.

Descriptor-passing is available in the 4.3 BSD system,12 but is little-used, possibly
because in earlier versions the related socket facilities were buggy. It will also appear in
modern versions of Unix System V.13

SIMPLE EXAMPLES

A graded set of examples will illustrate how these mechanisms can solve problems that
vex other systems.

Talking to Users

When a user logs in to traditional Unix systems, an entry is made in the /etc/utmp file,
recording the login name and the terminal or network channel being used. Although this
file is often used merely to show who is where, it is also used to establish communication
with the user. For example, the write command and the mail-notification service look up
a user’s name, and send a message to the corresponding terminal. This simple scheme
does not work well with windowing terminals, because the messages disturb the protocol
between the host and the terminal, and because there is no obvious way to relate the
terminal’s special file to a particular window. Windowing systems often use somewhat
messy ways around this problem, such as making additional entries in the utmp file, or
logging the user in more than once. Even without windows, there are security problems
and other difficulties that follow from letting users write on each other’s terminals.

We use stream-mounting to interpose a program between a terminal special file and the
terminal itself. The program, called vismon , mounts one end of a pipe on the user’s ter-
minal. Normally it occupies an inconspicuous window, displaying system activity and
announcing arriving mail. When some other process opens and writes on the special file
for the terminal, the mounted stream receives the data; vismon creates a new window, and
copies this data to it. The new window has a shell, so that if the message was from a
write command, the recipient can write back.

Communication between the terminal and the windowing multiplexor on the host is not
disturbed; it continues to flow to the terminal itself, not to vismon, because the mount
operation affects only the interpretation of file names, not existing file descriptors.

Network Calling: Simple Form

Making a network connection is a complicated activity. There is often name translation
of various kinds, and sometimes negotiations with various entities. With the Datakit
VCS network,14 for example, a call is placed by negotiating with a node controller.
When dialing over the switched telephone system, one must talk to any of several kinds
of automatic dialers. Setting up a connection on an Internet under any of the extant pro-
tocols, for example TCP/IP,15, 16 requires translation of a symbolic name to a net address,
and then special communication with the remote host. These setup protocols should cer-
tainly not be in kernel code, so most systems package them in user-callable libraries.
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With our primitives, it is straightforward to encapsulate a network-connection algorithm
in a single executable program. A application desiring to make an outward connection
would call a simple routine that creates a pipe, forks, and in the child process executes
the network dialer program. The dialer passes back either an error code, or a file descrip-
tor referring to an open connection to the other machine. The pseudo-code for this
library routine, neglecting error-checking and closing down the pipe, is:

netcall(address)
{ int p[2];

pipe(p);
if (fork()!=0)

execute("/etc/netcaller", address, p[0]);
status = wait();
if (bad(status))

return(errcode);
passedinfo = recvfile(p[1]);
return(passedinfo.fd);

}

Here, execute is an argument-marshalling interface to the kernel exec call, which runs
the program named by its first argument. This /etc/netcaller program can be arbi-
trarily complicated, but does not occupy the same address space as its caller. Placing the
connection-establishment code in a separate program has several advantages. First, if
something in the network interface changes, only one program needs to be fixed and rein-
stalled. Second, the call setup program may negotiate permissions and provide the
caller’s identity reliably, because it can be a privileged (set-UID) program.

When connections are made by library routines, either the operating system must know
enough about the call setup protocols to authenticate the caller to the target system, or the
application itself must be privileged (e.g. rlogin in typical BSD systems). In the
method described above, authentication need not be done in the kernel, but the trusted
code is confined to a single, separate executable program.

Shared libraries provide some of the advantages of our approach: they reduce the bulk
of code included with each program that makes network connections, and also simplify
fixing bugs and otherwise maintaining the connection algorithms. However, shared
libraries are not available in all versions of the operating system, and in any event do not
help with authentication, because they run in the protection domain of the user who exe-
cutes them.

The netcall routine invokes a subprocess to create a connection, and returns its file
descriptor; the subprocess disappears once the connection is established. This is impor-
tant to the efficiency of the scheme. Once the call is set up, the application program
communicates directly with the kernel transport modules to do its I/O. The data need not
be diverted through another process.

Process Connections

Suppose you are writing a multi-player game, in which several people interact with
each other. One design uses a pair of programs: a controller process that runs throughout
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the game and coordinates the play, and a player program, with one instance for each
player, that communicates with the controller.

When the controller starts, it creates a conventionally-located file, stream-mounts one
end of a pipe on this file, and waits for connection messages to arrive from players.
When the player program is run, it opens the communication file, and creates its own
pipe. It starts communication by sending one end of this pipe to the game controller over
the communication file.

As each passed pipe appears on the controller’s connection stream, it accepts the con-
nection with recvfile. Thereafter, each player transmits moves and receives replies over its
end of the pipe; the controller reads players’ moves and transmits replies over the end it
received. It maintains the global state of the game, and uses the select(2) mechanism to
multiplex connection requests and the communication with the player programs.

THE CONNECTION SERVER

The final example illustrates a general connection server. It combines ideas used by
the initial network-calling scheme and the game design, described above, to create a flexi-
ble switchboard through which programs can connect to remote or local services.

Two things are necessary for handling server-client relationships: first, some program
must establish itself as a server, and wait for requests for the service; and second, pro-
grams must make requests. We will first describe the external appearance of the scheme
(the library entry points), then the addressing and naming, and then the implementation.

A program that desires to make a connection calls the routine ipcopen, passing a char-
acter string that specifies the address and the desired service at that address.

fd = ipcopen(service);

The ipcopen routine returns a file descriptor connected to the requested server. If it fails,
a string describing the error is available.

In order to announce a service, ipccreat is used; its argument is a string that names the
service. The return value is a file descriptor fd that is a channel on which connection
requests will be sent.

fd = ipccreat(service);

To wait for requests, the server uses the ipclisten routine. Its argument is the same fd
returned by ipccreat:

ip = ipclisten(fd);

Ipclisten returns when another program calls ipcopen with an argument corresponding to
the service, in a way discussed below. Its return value is a structure containing informa-
tion about the caller, such as the user name, and, where relevant, the name of the machine
from which the call was placed. This new connection may be rejected:

ipcreject(ip, errcode);

or it may be accepted:

fd = ipcaccept(ip, cfd);
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If the server itself is capable of handling all communication with its client, it hands
ipcaccept a null file descriptor as cfd, and uses the return value from ipcaccept as a file
descriptor to communicate with its client. Depending on the locations of the server and
the client, this may be either a pipe, or a stream connection to a remote machine.

Sometimes, the purpose of a server is not to communicate directly, but to set up
another connection on behalf of its client. A network dialing server, for example,
receives the desired address in the ip structure returned by ipclisten, and connects to this
address with network-specific primitives. If the connection succeeds, the server sends the
descriptor for the connection to the client in the cfd argument of ipcaccept. The connec-
tion server’s work is then complete, and it drops out of the conversation between the
client and the real server it arranged to call.

The various file descriptors in these calls all work properly with the select system call,
so a single server may issue several ipccreat calls, and wait a connection to appear before
committing itself to using ipclisten on any one of them. Because of the buffering
inherent in the pipes used to make connections, several requests may be outstanding at
once on an ipclisten channel. If the server is slow, callers of ipcopen may block await-
ing space to write their messages.

Addresses

The arguments supplied to ipcopen and ipccreat are strings with several components
separated by exclamation mark ‘!’ characters. The first part is interpreted as a file name.
If it is absolute, it is used as is; otherwise, it is taken to be a file in the directory /cs,
which we use, conventionally, to collect rendezvous points. For example, a game con-
troller like that discussed in a previous section might announce itself with

ipccreat("mazewar");

The player program could then connect to the controller with

ipcopen("mazewar");

In this simple case, the IPC routines merely accomplish a convenient packaging of the
scheme discussed above.

When a multi-component argument is given to ipcopen, the server selected by the first
component receives the remaining components as part of the ip structure returned by its
ipclisten, and interprets them according to its own conventions. For example, there is a
dialing server for each kind of network. If the first component of an ipcopen specifies a
network server, the remaining components conventionally supply an address within that
network, and possibly a service obtainable at that address. We have three kinds of net-
works: tcp (TCP/IP connection), dk (Datakit connection), and phone (dial-up telephone).
Each network server adopts the convention that a missing service name means a connec-
tion to an end-point that allows one to log in by hand. Therefore, calling ipcopen with
the strings

tcp!research.att.com
dk!nj/astro/research
phone!201-582-5940
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gets connections over which one will receive a ‘login:’ greeting, each over a different
kind of network. The servers are responsible for the details of name translation, perform-
ing the appropriate connection protocol, and so forth. Some examples of named services
at particular locations are

tcp!dutoit.att.com!whoami
dk!research!smtp

The first is a debugging service that echoes facts about the connection and the user ID of
the person who requests it. The second illustrates how remote mail is sent: by connecting
to the smtp server (mail receiver) on the appropriate machine.

IPC Implementation

For a simple service, the ipccreat routine works just like the game-manager program
described above; it first creates a file in the /cs directory corresponding to the name of the
service, then makes a pipe and stream-mounts one end of the pipe on this file. For com-
plex services, which have a ‘!’ in their names, the simple service named to the left of the
‘!’ must be created first; when ipccreat is handed the name of such a service, it uses a
version of ipcopen referring to the simple, underlying server, and passes it the remainder
of the name. In either case, ipccreat returns its own end of its pipe, ready to receive
requests.

The ipcopen routine uses a technique that resembles that used by the simple network
calling routine described above, but differs in detail. It opens the file in /cs correspond-
ing to the desired service, makes a pipe, and hands one end of the pipe to the server. It
then sends the actual contents of the request (the full address) to its end of the pipe, and
waits for an acceptance or rejection message to appear on this pipe.

The server ipclisten call waits for a stream (passed by someone’s ipcopen) to appear on
the file descriptor mounted on its /cs communication file; as each appears, it reads the
request block from the passed stream, and returns it to the server.

After analysing the request, the server calls either ipcaccept or ipcreject; each sends an
appropriate message back to the client over the passed stream. Ipcaccept has two cases:
when its cfd argument is empty, the same pipe sent to the server by the client is used for
communication; when cfd is non-empty, that file descriptor is sent back to the client.
Ipcopen returns the appropriate descriptor.

Network Managers

The IPC routines discussed above handle both clients and servers that are local to a
single system, and are also sufficient to accomplish outgoing network connections. One
missing piece is how to write the programs that accept connections from a network, and
arrange to invoke the appropriate local services. We call such programs managers.

The networking part of a manager is specific to its network, and usually must conduct
dialogues both with the operating system and with its remote client. For example, the
manager for TCP/IP must arrange to receive IP packets sent to certain port numbers, and
analyse the packets to determine what service is being requested; then it must select a
port number for the conversation, communicate it to the peer, and arrange to collect pack-



INTERPROCESS COMMUNICATION 11

ets on this port number. For example, this is the role of the inetd program in BSD sys-
tems. Finally, the manager must arrange to supply the selected local service. Each net-
work manager could have ad hoc code for this part of the job, as is the usual case;
instead, they depend on a more general program called the service manager.

The Service Manager

By using ipccreat, a process establishes itself as a server and prepares to receive
requests. While it is serving, it must remain in existence. For some servers, like the
multi-player game controller that continues to run as users enter and leave the game, the
longevity of the server is appropriate. However, many, or even most, useful services do
not necessarily need individual long-lived servers, because the service merely involves
execution of a particular program. For example, services like rlogin, telnet, smtp and
ftp, as well as simpler ones that merely provide the date, or send a file to a line printer,
can all be accomplished merely by running the appropriate program with input and output
connected to the right place. Even when the characteristics of such services differ in
detail, there are general patterns. Some, for example, require no authentication, some
require checking of authentication according to an automatic scheme, and others always
insist on a password.

The observation that many services share a common structure suggested a common
solution: the Service Manager. It is started when the operating system is booted, and is
driven by a specification file; each entry in the file contains the name of the service, and a
list of actions to be performed when that service is requested. The service manager
issues ipccreat for the name given in each entry; when another process uses ipcopen to
request the service, the service manager carries out each encoded action.

The most important action specifies a command to be executed; for example, the line

date cmd(date)

means that connecting to the service date would run the ‘date’ command. Other actions
may specify the user ID under which the program is run:

uucp user(uucp)+cmd(/usr/lib/uucp/uucico)

This service specifies a passwordless connection to the uucp file-transfer program; a
locally-conventional TCP/IP port number is used for such connections, and a correspond-
ing convention is used on our Datakit network. There are other built-in actions:

login ttyld+password+login

means that the login service needs to install the line discipline module for terminal pro-
cessing, and also to execute the login command;

oklogin ttyld+auth+login

is similar, but allows passwordless login. Authorisation is checked by the auth
specification, which determines whether the call came from a trusted host on a trusted
network, so that the passed user ID can be believed, while the password specification
means that authentication must be supplied by the user. In both cases, the regular login
command is called, with or without special flags that indicate whether the user’s identity
has been checked.
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USES

The techniques described in this paper permit a general approach to network and local
connections in which most of the work is done in a few user-mode programs. As an
example of the benefits of the scheme, we have unified various commands that do remote
login over two kinds of networks (TCP/IP and Datakit). A single command, con, tries
various networks and uses the first over which a connection can be made. The traditional
names (like rlogin) are retained as links, but the only effect of using them is to influence
the order in which networks are tried. The stream implementation makes the transport
layers of the networks sufficiently similar that the same code can be used once the con-
nection is established; the techniques described here make even the connection interface
uniform.

These same techniques extend well to inter-network connectivity. For example, most
of our own machines have a Datakit interface, but only some have Ethernet connections.
Nevertheless, from a Datakit-only machine, it is easy to connect to another machine that
has only Ethernet, even one that does not run the Ninth Edition system. There are two
schemes. In the first, the local operating system contains the TCP/IP protocol code, and
below the TCP/IP level, the ‘device’ interface is actually a Datakit connection to another
local machine on both networks. Because Datakit channels and the network layer
expected by TCP/IP have stream interfaces, they are easily connected; on the gateway
machine, the IP packets are routed appropriately. This approach transparently handles
other services, like UDP,16, 17 that use the IP protocol suite.

The other scheme uses the methods described in this paper. On a Datakit-only
machine, the TCP network dialout program does not use TCP/IP at all, and indeed
TCP/IP code need not be configured into the operating system; instead, it creates a
Datakit transport-level connection to a protocol conversion server on a gateway machine.
A complementary server on the gateway accepts connections on behalf of Datakit
machine, and forwards them to the TCP/IP network. The difference between the two
schemes is invisible to users of connection-oriented protocols, although it does not sup-
port connectionless protocols like UDP.

CONCLUSION

This paper reports two developments. The first involves small additions to an instance
of the Unix operating system to support rendezvous between unrelated processes. In
essence, the scheme suggests passing capabilities (open files referring to stream connec-
tions) between processes, using the file system to name the rendezvous points. The idea
of capability-passing is by no means new, having been used in systems as disparate as
DEMOS18 and Mach.19, 20 as well as many others.21 Unlike some systems, including
Mach, or the S/Net Linda kernel,22 our approach clings to the connected, byte-stream
model already prevailing in traditional Unix systems, instead of assigning types to mes-
sages, or using connectionless datagrams in which each IPC message is sent to a desig-
nated port (Mach, for example) or to a more general destination (Linda, for example).
We believe that this model retains considerable value, although we admit to bias that may
stem ultimately from working for a telephone company. Byte streams are readily con-
nected both locally, and to remote machines of different kinds, running different operating
systems; all that is needed is a common transport-layer protocol.
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The second development we report is a higher-level interface to the basic IPC mechan-
isms, which concentrates the connection-establishment protocols within a few executable
programs that run as privileged user programs. Fundamentally, this scheme resembles the
‘name servers’ used in many contexts, for example the Internet Domain name server23 or
Clearinghouse,24 but is somewhat more general, since it is intended to cover a variety of
networks and protocols. In this it is more similar in spirit to the Heterogeneous Name
Service facility;25 in particular, our approach maps strings to services in a heterogeneous
setting, and uses as context the first component of the string to direct interpretation of the
latter part.

The underlying process rendezvous mechanisms described here are achievable in the
BSD system, using Unix domain sockets. On the other hand, earlier versions of our
work have been incorporated into Unix System V, which in Release 4 permits stream-
mounting and file-descriptor passing. Thus it should be possible to adapt higher-level
interfaces such as the Service Manager to both of these systems.

Unix has always had a rich file system structure, both in its naming scheme (hierarchi-
cal directories) and in the properties of open files (disk files, devices, pipes). The Eighth
Edition exploited the file system even more insistently than its predecessors or contem-
poraries of the same genus. Remote file systems, process files, and more exotic file sys-
tem types8 all create objects with names that can be handed as usefully to an existing tool
as to a new one designed to take advantage of the object’s special properties. Similarly,
the stream I/O system provides a framework for making file descriptors act in the stan-
dard way most programs already expect, while providing a richer underlying behaviour,
for handling network protocols, or processing appropriate for terminals.

The developments described here follow the same path; they encourage use of the file
name space to establish communication between processes. In the best of cases, merely
opening a named file is enough. More complicated situations require more involved
negotiations, but the file system still supplies the point of contact. Moreover, the neces-
sary negotiations may be encapsulated in a common form that hides the differences
between local and any of a variety of remote connections.
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