
11/3/71 /DEV/MEM (IV)

NAME mem -- core memory

SYNOPSIS

DESCRIPTION mem maps the core memory of the computer into a file. It
may be used, for example, to examine, and even to patch
the system using the debugger.

Mem is a byte—oriented file; its bytes are numbered 0 to
65,535.

FILES

SEE ALSO

DIAGNOSTICS

BUGS If a location not corresponding to implemented memory is
read or written, the system will incur a bus—error trap
and, in panic, will reboot itself.

OWNER ken, dmr

11/3/71 /DEV/PPT (IV)

NAME ppt -- punched paper tape

SYNO?S IS

DESCRIPTION ppt refers to the paper tape reader or punch, depending on
whether it is read or written.

When is opened for writing, a 100—character leader is
punched. Thereafter each byte written is punched on the
tape. No editing of the characters is performed. When the
file is closed, a 100—character trailer is punched.

When ppt is opened for reading, the process waits until
tape is placed in the reader and the reader is on—line.
Then requests to read cause the characters read to be
passed back to the program, again without any editing.
This means that several null characters will usually
appear at the beginning of the file; they correspond to
the tape leader. Likewise several nulls are likely to
appear at the end. End—of—file is generated when the tape
runs out.

Seek calls for this file are meaningless and are
effectively ignored (however, the read/write pointers are
maintained and an arbitrary sequence of reads or writes
intermixed with seeks will give apparently correct results
when checked with tell).

FILES

SEE ALSO lbppt, dbppt, bppt format

DIAGNOSTICS

BUGS Previously, there were separate special files for ASCII
tape (which caused null characters to be suppressed) and
binary tape (which used a blocked format with checksums).
These notions were conceptually quite attractive, but they
were discarded to save space in the system.

OWNER ken, dmr

11/3/71 /DEV/RFO (IV)

NAME rf0 -- RF11—RS11 fixed—head disk file

SYNOPSIS

DESCRIPTION This file refers to the entire RF disk. It may be either
read or written, although writing is inherently very
dangerous, since a file system resides there.

The disk contains 1024 256—word blocks, numbered 0 to
1023. Like the other block—structured devices (tape, RK
disk) this file is addressed in blocks, not bytes. This
has two consequences: seek calls refer to block numbers,
not byte numbers; and sequential reading or writing always
advance the read or write pointer by at least one block.
Thus successive reads of 10 characters from this file
actually read the first 10 characters from successive
blocks.

FILES

SEE ALSO /dev/tap0, /dev/rk0

DIAGNOSTICS

BUGS The fact that this device is addressed in terms of blocks,
not bytes, is extremely unfortunate. It is due entirely to
the fact that read and write pointers (and consequently
the arguments to seek and tell) are single—precision
numbers. This really has to be changed but unfortunately
the repercussions are serious.

OWNER ken, dmr

11/3/71 /DEV/RK0 (IV)
NAME rk0 -- RK03 (or RK05) disk

SYNOPSIS

DESCRIPTION rk0 refers to the entire RK03 disk as a single
sequentially—addressed file. Its 256—word blocks are
numbered 0 to 4871. Like the RF disk and the tape files,
its addressing is block—oriented. Consult the /dev/rf0
section.

FILES

SEE ALSO /dev/rf0, /dev/tap0

DIAGNOSTICS

BUGS See /dev/rf0

OWNER ken, dmr

11/3/71 /DEV/TAP0 ... TAP7 (Iv)

NAME tap0 ... tap7

SYNOPSIS

DESCRIPTION These files refer to DECtape drives 0 to 7. Since the
logical drive number can be manually set, all eight files
exist even though at present there are only two physical
drives.

The 256—word blocks on a standard DECtape are numbered 0
to 577. However, the system makes no assumption about this
number; a block can be read or written if it exists on the
tape and not otherwise. An error is returned if a
transaction is attempted for a block which does not exist.

Like the RK and RF special files, addressing on the tape
files is block—oriented. See the RF0 section.

FILES

SEE ALSO /dev/rf0, /dev/rk0

DIAGNOSTICS

BUGS see /dev/rf0

OWNER ken, dmr

11/3/71 /DEV/TTY (IV)

NAME tty -- console typewriter

SYNOPSIS

DESCRIPTION tty (as distinct from tty0 ..., tty5) refers to the
console typewriter hard—wired to the PDP—11. Most of the
time it is turned off and so has little general use.

Generally, the disciplines involved in dealing with tty
are similar to those for tty0 ... and the appropriate
section should be consulted. The following differences are
salient:

The system calls stty and gtty do not apply to this
device. It cannot be placed in raw mode; on input, upper
case letters are always mapped into lower case letters; a
carriage return is echoed when a line—feed is typed.

The quit character is not FS (as with tty0...) but is
generated by the key labelled "alt mode".

By appropriate console switch settings, it is possible to
cause UNIX to come up as a single—user system with I/O on
this device.

FILES

SEE ALSO /dev/tty0, ...; init

DIAGNOSTICS

BUGS

OWNER ken, dmr

11/3/71 /DEV/TTY0 ... TTY5 (Iv)

NAME tty0 ... tty5 -- communications interfaces

SYNOPSIS

DESCRIPTION These files refer to DC11 asynchronous communications
interfaces. At the moment there are six of them, but the
number is subject to change. Names for up to four others
will be constructed by an obvious algorithm.

When one of these files is opened, it causes the process
to wait until a connection is established. (In practice,
however, user’s programs seldom open these files; they are
opened by init and become a user’s standard input and
output file.) The very first typewriter file open in a
process becomes the control typewriter for that process.
The control typewriter plays a special role in the
handling quit or interrupt signals, as discussed below.
The control typewriter is inherited by a child process
during a fork.

A terminal associated with one of these files ordinarily
operates in full—duplex mode. Characters may be typed at
any time, even while output is occurring, and are only
lost when the system s character input buffers become
completely choked, which is very rare.

When first opened, the interface expects the terminal to
use 15 odd—parity, 10—bit ASCII characters per second and
to have the new—line function. Finally, the system
calculates delays after sending the code for certain
functions (e.g., new—line, tab) on the assumption that the
terminal is a Teletype model 37. All this is merely a long
way of saying that the system expects to be used by a TTY
37. However, most of these assumptions can be changed by a
special system call: in particular, the expected parity
can be changed; the speed, character size, and stop bits
can be changed (speeds available are 134.5, 150, 300, 1200
baud; see the DC11 manual); the new—line function can be
simulated by a combination of the carriage—return and
line—feed functions; carriage return can be translated
into new—line on input; upper case letters can be mapped
into lower case letters; echoing can be turned off so the
terminal operates in half duplex. See the system call
stty. (Also see init for the way 300—baud terminals are
detected.)

Normally, a typewriter operates in units of lines. This
means that a program attempting to read will be suspended
until an entire line has been typed. Also, no matter how
many characters

11/3/71 /DEV/TTY0 ... TTY5 (IV)

are requested in the read call, at most one line will be
returned. It is not however necessary to read a whole line
at once; any number of characters may be requested in a
read, even one, without losing information.

The EOT character may be used to generate an end of file
from a typewriter. When an EOT is received, all the
characters waiting to be read are immediately passed to
the program, without waiting for a new—line. Thus if there
are no characters waiting, which is to say the EOT
occurred at the beginning of a line, zero characters will
be passed back, and this is the standard end—of—file
signal.

When the carrier signal from the dataset drops (usually
because the user has hung up his terminal) any read
returns with an end—of—file indication. Thus programs
which read a typewriter and are sensitive to end—of—file
on their inputs (which all programs should be) will
terminate appropriately when hung up on.

Two characters have a special meaning when typed. The
ASCII DEL character (sometimes called rubout”) is the
interrupt signal. When this character is received from a
given typewriter, a search is made for all processes which
have this typewriter as their control typewriter, and
which have not informed the system that they wish to
ignore interrupts. If there is more than one such process,
one of these is selected, for practical purposes at
random. Then either the process is forced to exit or a
trap is simulated to an agreed—upon location in the
process. See intr for more information.

The ASCII character FS is the quit signal. Its treatment
is identical to the interrupt signal except that unless
the receiving process has made other arrangements it will
not only be terminated but a core image file will be
written. (See quit for more information.)

During input, erase and kill processing is normally done.
The character # erases the last character typed, except
that it will not erase beyond the beginning of a line or
an EOF. The character "@" kills the entire line up to the
point where it was typed, but not beyond an EOF. Both
these characters operate on a keystroke basis
independently of any backspacing or tabbing that may have
been done. Either "@“ or “#“ may be entered literally by
preceding it by "\"; the erase or kill character remains,
but the "\"

11/3/71 /DEV/TTY0 ... TTY5 (IV)

disappears.

It is also possible (again by sys stty) to put the
typewriter into raw mode. In this mode, the program
reading is wakened on each character, and when a program
reads, it waits only until at least one character has been
typed. In raw mode, no erase or kill processing is done;
and the EOT, quit and interrupt characters are not treated
specially.

Output is prosaic compared to input. It should be noted,
however, that when one or more characters are written,
they are actually transmitted to the terminal as soon as
previously—written characters have finished typing. When a
program produces characters too rapidly to be typed, as is
very common, it may be suspended for a time.

Odd parity is always generated on output, except that the
characters EOT and NAK have the wrong parity. Thus the 37
TTY will not hang up (EOT) or lock its keyboard (NAK) if a
program accidentally prints these characters.

FILES

SEE ALSO tty

DIAGNOSTICS

BUGS As has been suggested, UNIX has a heavy predisposition
towards 37 Teletype terminals. However, it is quite
possible to use 300—baud terminals such as the GE TermiNet
300. (See init for the procedure.) The main difficulty in
practice is 37—oriented delay calculations.

Terminals such as the IBM 2741 would theoretically be very
desirable but there are many difficulties related to its
inadequate and non—ASCII character sets (the 2741 has two,
count 'em) and the inherently half—duplex nature of the
terminal. It is possible to produce output on a 2741; cf
type.

OWNER ken, dmr

