
A TUTORIAL INTRODUCTION TO THE LANGUAGE B

B. W. Kernighan

Bell Laboratories

Murray Hill, New Jersey

1. Introduction

B is a new computer language designed and implemented at Murray Hill. It runs and is actively supported
and documented on the H6070 TSS system at Murray Hill.

B is particularly suited for non-numeric computations, typified by system programming. These usually
involve many complex logical decisions, computations on integers and fields of words, especially charac-
ters and bit strings, and no floating point. B programs for such operations are substantially easier to write
and understand than GMAP programs. The generated code is quite good. Implementation of simple TSS
subsystems is an especially good use for B.

B is reminiscent of BCPL [2] , for those who can remember. The original design and implementation are
the work of K. L. Thompson and D. M. Ritchie; their original 6070 version has been substantially improved
by S. C. Johnson, who also wrote the runtime library.

This memo is a tutorial to make learning B as painless as possible. Most of the features of the language are
mentioned in passing, but only the most important are stressed. Users who would like the full story should
consult A User’s Reference to B on MH-TSS, by S. C. Johnson [1], which should be read for details any-
way.

We will assume that the user is familiar with the mysteries of TSS, such as creating files, text editing, and
the like, and has programmed in some language before.

Throughout, the symbolism (->n) implies that a topic will be expanded upon in section n of this manual.
Appendix E is an index to the contents.

2. General Layout of Programs

main() {
-- statements --
}

newfunc(arg1, arg2) {
-- statements --
}

fun3(arg) {
-- more statements --
}

All B programs consist of one or more "functions", which are similar to the functions and subroutines of a
Fortran program, or the procedures of PL/I.main is such a function, and in fact all B programs must have
a main. Execution of the program begins at the first statement ofmain , and usually ends at the last.
main will usually invoke other functions to perform its job, some coming from the same program, and oth-
ers from libraries. As in Fortran, one method of communicating data between functions is by arguments.
The parentheses following the function name surround the argument list; heremain is a function of no
arguments, indicated by (). The {} enclose the statements of the function.

- 2 -

Functions are totally independent as far as the compiler is concerned, andmain need not be the first,
although execution starts with it. This program has two other functions:newfunc has two arguments, and
fun3 has one. Each function consists of one or more statements which express operations on variables and
transfer of control. Functions may be used recursively at little cost in time or space (->30).

Most statements contain expressions, which in turn are made up of operators, names, and constants, with
parentheses to alter the order of evaluation. B has a particularly rich set of operators and expressions, and
relatively few statement types.

The format of B programs is quite free; we will strive for a uniform style as a good programming practice.
Statements can be broken into more than one line at any reasonable point, i.e., between names, operators,
and constants. Conversely, more than one statement can occur on one line. Statements are separated by
semicolons. A group of statements may be grouped together and treated as a single statement by enclosing
them in {}; in this case, no semicolon is used after the ’}’ . This convention is used to lump together the
statements of a function.

3. Compiling and Running B Programs

(a) SYSTEM? filsys cf bsource,b/1,100/
(b) SYSTEM? filsys cf bhs,b/6,6/,m/r/
(c) SYSTEM? [create source program with any text editor]
(d) SYSTEM? ./bj (w) bsource bhs
(e) SYSTEM? /bhs

(a) and (b) need only be done once; they create file space for the source program and the loaded program.
(d) compiles the source program frombsource , and after many machinations, creates a program inbhs .
(e) runs that program. ./bj is more fully described in [1].

You may from time to time get error messages from the B compilers These look like either of

ee n
ee name n

where ee is a two-character error message, andn is the approximate source line number of the error. (-
>Appendix A)

4. A Working B Program; Variables

main() {
auto a, b, c, sum;

a = 1; b = 2; c = 3;
sum = a+b+c;
putnumb(sum);

}

This simple program adds three numbers, and prints the sum. It illustrates the use of variables and con-
stants, declarations, a bit of arithmetic, and a function call. Let us discuss them in reverse order.

putnumb is a library function of one argument, which will print a number on the terminal (unless some
other destination is specified (->28)). The code for a version ofputnumb can be found in (->30). Notice
that a function is invoked by naming it, followed by the argument(s) in parentheses. There is no CALL
statement as in Fortran.

The arithmetic and the assignment statements are much the same as in Fortran, except for the semicolons.
Notice that we can put several on a line if we want. Conversely, we can split a statement among lines if it
seems desirable - the split may be between any of the operators or variables, but not in the middle of a vari-
able name.

One major difference between B and Fortran is that B is atypeless language: there is no analog in B of
the Fortran IJKLMN convention. Thus a, b, c, and sum are all 36-bit quantities, and arithmetic operations
are integer. This is discussed at length in the next section (->5).

- 3 -

Variable names have one to eight ascii characters, chosen from A-Z, a-z, .,_, 0-9, and start with a non-
digit. Stylistically, it’s much better to use only a single case (upper or lower) and give functions and exter-
nal variables (->7) names that are unique in the first six characters. (Function and external variable names
are used by batch GMAP, which is limited to six character single-case identifiers.)

The statement "auto ..." is a declaration, that is, it defines the variables to be used within the function. auto
in particular is used to declare local variables, variables which exist only within their own function (main
in this case). Variables may be distributed among auto declarations arbitrarily, but all declarations must
precede executable statements. All variables must be declared, as one of auto, extrn (->7), or implicitly as
function arguments (->8).

auto variables are different from Fortran local variables in one important respect - they appear when the
function is entered, and disappear when it is left. They cannot be initialized at compile time, and they have
no memory from one call to the next.

5. Arithmetic; Octal Numbers

All arithmetic in B is integer, unless special functions are written. There is no equivalent of the Fortran
IJKLMN convention, no floating point, no data types, no type conversions, and no type checking. Users of
double-precision complex will have to fend for themselves. (But see ->32 for how to call Fortran subrou-
tines.)

The arithmetic operators are the usual ’+’, ’-’, ’*’, and ’/’ (integer division). In addition we have the
remainder operator

x = a%b

sets x to the remainder after a is divided by b (both of which should be positive).

Since B is often used for system programming and bit-manipulation, octal numbers are an important part of
the language. The syntax of B says that any number that begins with 0 is an octal number (and hence can’t
have any 8’s or 9’s in it). Thus 0777 is an octal constant, with decimal value 511.

6. Characters; putchar; Newline

main() {
auto a;
a= ’hi!’;
putchar(a);
putchar(’*n’);

}

This program prints "hi!" on the terminal it illustrates the use of character constants and variables. A
"character" is one to four ascii characters, enclosed in single quotes. The characters are stored in a single
machine word, right-justified and zero-filled. We used a variable to hold "hi!", but could have used a con-
stant directly as well.

The sequence "*n" is B Jargon for "newline character", which, when printed, skips the terminal to the
beginning of t:e next line. No output occurs until putchar encounters a "*n" or the program terminates.
Omission of the "*n", a common error, causes all output to appear on one line, which is usually not the
desired result. There are several other escapes like "*n" for representing hard-to-get characters (-
>Appendix B). Notice that "*n" is a single character: putchar(’hi!*n’) prints four characters (the maximum
with a single call).

Since B is a typeless language, arithmetic on characters is quite legal, and even makes sense sometimes:

c = c+’A’-’a’;

converts a single character stored in c to upper case (making use of the fact that corresponding ascii letters
are a fixed distance apart).

- 4 -

7. External Variables

main() {
extrn a, b, c;
putchar(a); putchar(b); putchar(c); putchar(’!*n’);

}

a ’hell’;
b ’o, w’;
c ’orld’;

This example illustratesexternal variables , variables which are rather like Fortran COMMON, in
that they exist external to all functions, and are (potentially) available to all functions. Any function that
wishes to access an external variable must contain anextrn declaration for it. Furthermore, we must
define all external variables outside any function% For our example variables a, b, and c, this is done in the
last three lines.

External storage is static, and always remains in existence, so it can be initialized. (Conversely,auto stor-
age appears whenever the function is invoked, and disappears when the function is left.auto variables of
the same name in different functions are unrelated.) Initialization is done as shown: the initial value
appears after the name, as a constant. We have shown character constants; other forms are also possible.
External variables are initialized to zero if not set explicitly.

8. Functions

main() {
extrn a,b,c,d;
put2char(a,b) ;
put2char(c,d) ;

}

put2char(x,y) {
putchar(x);
putchar(y);
}

a ’hell’; b ’o, w’; c ’orld’; d ’!*n’;

This example does the same thing as the last, but uses a separate (and quite artificial) function of two argu-
ments,put2char . The dummy names x and y refer to the arguments throughout putchar; they are not
declared in an auto statement. We could equally well have made a,b,c,dauto variables, or have called
put2char as

put2char(’hell’,’o, w’);
etc.

Execution ofput2char terminates when it runs into the closing ’}’, as inmain ; control returns to the
next statement of the calling program.

9. Input; getchar

main() {
auto c;
c= getchar();
putchar(c);

}

getchar is another library IO function. It fetches one character from the input line each time it is called,
and returns that character, right adjusted and zero filled, as the value of the function. The actual implemen-
tation ofgetchar is to read an entire line, and then hand out the characters one at a time. After the ’*n’ at
the end of the line has been returned, the next call to getchar will cause an entire new line to be read, and its

- 5 -

first character returned. Input is generally from the terminal (->28).

10. Relational Operators

== equal to (".EQ." to Fortraners)
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to

These are the relational operators; we will use ’!=’ ("not equal to) in the next example. Don’t forget that
the equality test is

11 if; goto; Labels; Comments

main() {
auto c;

read:
c= getchar();
putchar(c);
if(c != ’*n’) goto read;

} /* loop if not a newline */

This function reads and writes one line. It illustrates several new things. First and easiest is the comment,
which is anything enclosed in /*...*/, just as in PL/I.

read is a label - a name followed by a colon ’:’, also just as in PL/I. A statement can have several labels if
desired. (Good programming practice dictates using few labels, so later examples will strive to get rid of
them.) The goto references a label in the same function.

The if statement is one of four conditionals in B. (while (->14), switch (->26), and "?:" (->16) are the oth-
ers.) Its general form is

if (expression) statement

The condition to be tested is any expression enclosed in parentheses. It is followed by a statement. The
expression is evaluated, and if its value is non-zero, the statement is executed. One of the nice things about
B is that the statement can be made arbitrarily complex (although we’ve used very simple ones here) by
enclosing simple statements in {} (->12)

12. Compound Statements

if(a<b) {
t = a;
a = b;
b = t;

}

As a simple example of compound statements, suppose we want to ensure that a exceeds b, as part of a sort
routine. The interchange of a and be takes three statements in B; they are grouped together by {} in the
example above.

As a general rule in B, anywhere you can use a simple statement, you can use any compound statement,
which is just a number of simple or compound ones enclosed in {}. Compound statements are not followed
by semicolons.

The ability to replace single statements by complex ones at will is one thing that makes B much more
pleasant to use than Fortran. Logic which requires several GOTO’s and labels in Fortran can be done in a
simple clear natural way using the compound statements of B.

- 6 -

13. Function Nesting

read:
c = putchar(getchar());
if (c != ’*n’) goto read;

Functions which return values (as all do, potentially ->24) can be used anywhere you might normally use
an expression. Thus we can usegetchar as the argument ofputchar , nesting the functions.
getchar returns exactly the character thatputchar needs as an argument.putchar also passes its
argument back as a value, so we assign this to c for later reference.

Even better, if c won’t be needed later, we can say

read:
if (putchar(getchar()) != ’*n’) goto read;

14. While statement; Assignment within an Expression

while ((c=getchar()) != ’*n’) putchar(c);

Avoiding isgoto ’s Thisgoto ’s. the previous one. (The difference? This one doesn’t print the terminating
’*n’.) The while statement is basically a loop statement, whose general form is

while (expression) statement

As in the if statement, the expression and the statement can both be arbitrarily complicated, although we
haven’t seen that yet. The action of while is

(a) evaluate the expression
(b) if its value is true (i. e., not zero), do the

statement and return to (a)

Our example gets the character and assigns it to c, and tests to see if it’s a ’*n’. If it isn’t, it does the state-
ment part of thewhile , aputchar , and then repeats.

Notice that we used an assignment statement "c=getchar()’" within an expression. This is a handy nota-
tional shortcut, usually produces better code, and is sometimes necessary if a statement is to be compressed.
This works because an assignment statement has a value, just as any other expression does. This also
implies that we can successfully use multiple assignments like

x = y = f(a)+g(b)

As an aside, the extra pair of parentheses in the assignment statement within the conditional were really
necessary: if we had said

c = getchar() != ’*n’

c would be set to 0 or 1 depending on whether the character fetched was a newline or not. This is because
the binding strength of the assignment operator ’=’ is lower than the relational operator ’!=’. (-> Appendix
D)

15. More on Whiles; Null Statement; exit

- 7 -

main() {
auto c;
while (1) {

while ((c=getchar()) != ’ ’)
if (putchar(c) == ’*n’) exit();

putchar(’*n’);
while ((c=getchar()) == ’ ’); /* skip blanks */
if (putchar(c)==’*n’) exit(); /* done when newline */
}

}

This terse example reads one line from the terminal, and prints each non-blank string of characters on a sep-
arate line: one or more blanks are converted into a single newline.

Line four fetches a character, and if it is non-blank, prints it, and uses the library functionexit to termi-
nate execution if it’s a newline. Note the use of the assignment within an expression to save the value of c.

Line seven skips over multiple blanks. It fetches a character, and if it’s blank, does the statement ’;’. This
is called a null statement - it really does nothing. Line seven is just a very tight loop, with all the work
done in the expression part of the while clause.

The slightly odd-looking construction

while(1){

}

is a way to get an infinite loop. "1" is always non-zero; so the statement part (compound here!) will always
be done. The only way to get out of the loop is to execute a goto (->11) or break (->26), or return from the
function with areturn statement (->24), or terminate execution byexit .

16. Else Clause; Conditional expressions

if (expression) statement else statement2

is the most general form of theif - the else part is sometimes useful. The canonical example sets x to
the minimum of a and b:

if (a<b) x=a; else x=b;

If’s and else’s can be used to construct logic that branches one of several ways, and then rejoins, a common
programming structure, in this way:

if(---)
{ -----

----- }
else if(---)

{ -----
----- }

else if(----)
{ -----

----- }

etc.

The conditions are tested in order, and exactly one block is executed - the first one whose if is satisfied.
When this block is finished, the next statement executed is the one after the last "else if" block.

B provides an alternate form of conditional which is often more concise and efficient. It is called the "con-
ditional expression" because it is a conditional which actually has a value and can be used anywhere an
expression can. The last example can best be expressed as

x = a<b ? a : b;

The meaning is: evaluate the expression to the left of ’?’. If it is true, evaluate the expression between ’?’

- 8 -

and ’:’ and assign that value to x. If it’s false, evaluate the expression to the right of ’:’ and assign its value
to x.

17. Unary Operators

auto k;
k = 0;
while (getchar() != ’*n’) ++k;

B has several interesting unary operators in addition to the traditional ’-’. The program above uses the
increment operator is equivalent to "k=k+1" but generates better code. ’++’ man also be used after a vari-
able, as in

k++

The only difference is this. suppose k is 5. Then

x = ++k

sets k to 6 and then sets x to k, i.e., to 6. But

x = k++

sets x to 5, and then k to 6.

Similarly, the unary decrement operator ’--’ can be used either before or after a variable to decrement by
one.

18. Bit Operators

c = o;
i = 36;
while ((i = i-9) >= 0) c = c | getchar()<<i;

B has several operators for logical bit-manipulation. The example above illustrates two, the OR ’’ , and
the left shift <<. This code packs the next four 9-bit characters from the input into the single 36-bit word c,
by successively left-shifting the character by i bit positions to the correct position and OR-ing it into the
word.

The other logical operators are AND ’&’, logical right shift

x = ~y&0777

sets x to the last 9 bits of the 1’s complement of y, and

x = x&077

replaces x by its last six bits.

The order of evaluation of unparenthesized expressions is determined by the relative binding strengths of
the operators involved (-> Appendix D).

19. Assignment operators

An unusual feature of B is that the normal binary operators like to form new assignment operators. For
example,

x =- 10

means "x=x-10". ’=-’ is an assignment operator. This convention is a useful notational shorthand, and
usually makes it possible for B to generate better code. But the spaces around the operator are critical! For
instance,

x = -10

sets x to -10, while

- 9 -

x =- 10

subtracts 10 from x. When no space is present,

x=-10

also decreases x by 10. This is quite contrary to the experience of most programmers.

Because assignment operators have lower binding strength than any other operator, the order of evaluation
should be watched carefully:

x = x<<y|z

means "shift x left y places, then OR in z, and store in x". But

x =<< y|z

means "shift x left by yz places", which is rather different.

The character-packing example can now be written better as

c= 0;
i = 36;
while ((i =- 9) >= 0) c =| getchar()<<i;

20. Vectors

A vector is a set of consecutive words, somewhat like a one-dimensional array in Fortran. The declaration

auto v[10];

allocates 11 consecutive words? v[0], v[1], ..., v[10] for v. Reference to the i-th element is made by v[i] ;
the [] brackets indicate subscripting. (There is no Fortran-like ambiguity between subscripts and function
call.)

sum = o;
i = 0;
while (i<=n) sum =+ V[i++];

This code sums the elements of the vector v. Notice the increment within the subscript - this is common
usage in B. Similarly, to find the first zero element of v,

i = -1;
while (v[++i]);

21. External Vectors

Vectors can of course be external variables rather thanauto . We declare v external within the function
(don’t mention a size) by

extrn v;

and then outside all functions write

v[10];

External vectors may be initialized just as external simple variables:

v[10] ’hi!’, 1, 2, 3, 0777;

sets v[0] to the character constant ’hi!’, and V[1] through v[4] to various numbers. v[5] through v[10] are
not initialized.

- 10 -

22. Addressing

To understand all the ramifications of vectors, a digression into addressing is necessary. The actual imple-
mentation of a vector consists of a word v which contains in its right half the address of the 0-th word of the
vector; i.e., v is really a pointer to the actual vector.

This implementation can lead to a fine trap for the unwary. If we say

auto u[10], v[10];

u = v;
v[0] = ...
v[1] = ...

the unsuspecting might believe that u[0] and u[1] contain the old values of v[0] and v[1]; in fact, since u is
just a pointer to v[0] , u actually refers to the new content. The statement "u=v" does not cause any copy of
information into the elements of u; they may indeed be lost because u no longer points to them.

The fact that vector elements are referenced by a pointer to the zeroeth entry makes subscripting trivial - the
address of v[i] is simply v+i. Furthermore, constructs like v[i][j] are quite legal: v[i] is simply a pointer to a
vector, and v[i][j] is its j-th entry. You have to set up your own storage, though.

To facilitate manipulation of addresses when it seems advisable, B provides two unary ad˜ress operators,
’*’ and ’&’. ’&’ is the address operator so &x is the address of x, assuming it has one. ’*’ is the indirection
operator; "*x" means "use the content of x as an address."

Subscripting operations can now be expressed differently:

x[0] is equivalent to *x
x[1] is equivalent to *(x+1)
&x[0] is equivalent to x

23. Strings

A string in B is in essence a vector of characters. It is written as

"this is a string"

and, in internal representation, is a vector with characters packed four to a word, left justified, and termi-
nated by a mysterious character known as ’*e’ (ascii EOT). Thus the string

"hello"

has six characters, the last of which is ’*e’. Characters are numbered from zero. Notice the difference
between strings and character constants. Strings are double-quoted, and have zero or more characters; they
are left justified and terminated by an explicit delimiter, ’*e’. Character constants are single-quoted, have
from one to four characters, and are right justified and zero-filled.

Some characters can only be put into strings by "escape sequences" (-> Appendix B). For instance, to get a
double quote into a string, use ’*"’, as in

"He said, *"Let’s go.*""

External variables may be initialized to string values simply by following their names by strings, exactly as
for other constants. These definitions initialize a, b, and three elements of v:

a "hello"; b "world’*;
v[2] "now is the time", "for all good men",

"to come to the aid of the party";

B provides several library functions for manipulating strings and accessing characters within them in a rela-
tively machine-independent way. These are all discussed in more detail in section 8.2 of [1]. The two most
commonly used arechar and lchar . char(s,n) returns the n-th character of s, right justified and zero-
filled. lchar(s,n,c) replaces the n-th character of s by c, and returns c. (The code forchar is given in the
next section.)

- 11 -

Because strings are vectors, writing "s1=s2" does not copy the characters in s2 into s1, but merely makes s1
point to s2. To copy s2 into s1, we can use char and lchar in a function likestrcopy :

strcopy(sl ,s2){
auto i;
i = 0;
while (lchar(sl,i,char(s2,i)) != ’*e’) i++;

}

24. Return statement

How do we arrange that a function like char returns a value to its caller? Here ischar :

char(s, n){
auto y,sh,cpos;
y = s[n/4]; /* word containing n-th char */
cpos = n%4; /* position of char in word */
sh = 27-9*cpos; /* bit positions to shift */
y = (y>>sh)&0777; /* shift and mask all but 9 bits */
return(y); /* return character to caller */

}

A return in a function causes an immediate return to the calling program. If thereturn is followed by
an expression in parentheses, this expression is evaluated, and the value returned to the caller. The expres-
sion can be arbitrarily complex, of course:char is actually defined as

char(s,n) return((s[n/4]>>(27-9*(n%4)))&0777);

Notice that char is written without {}, because it can be expressed as a simple statement.

25. Other String Functions

concat(s,al,a2,...,a10) concatenates the zero or more strings ai into one big string s, and returns s (which
means a pointer to S[0]). s must be declared big enough to hold the result (including the terminating ’*e’).

getstr(s) fetches the entire next line from the input unit into s, replacing the terminating ’*n’ by ’*e’. In B,
it is

getstr(s){
auto c,i;
while ((c=getchar()) != ’*n’) lchar(s,i++,c);
lchar(s,i,’*e’);
return(s) ;
}

Similarly putstr(s) puts the string s onto the output unit, except for the final ’*e’. Thus

auto s[20] ;
putstr(getstr(s)); putchar(’*n’);

copies an input line to the output.

26. Switch statement; break

- 12 -

loop:
switch (c=getchar()){

pr:
case ’p’: /* print */
case ’P’:

print();
goto loop;

case ’s’: /* subs */
case ’S’:

subs() ;
goto pr;

case ’d’: /* delete */
case ’D’:

delete();
goto loop;

case ’*n’: /* quit on newline */
break;

default:
error(); /* error if fall out */
goto loop;

}

This fragment of a text-editor program illustrates theswitch statement, which is a multi-way branch.
Here, the branch is controlled by a character read into c. If c is ’p’ or ’P’, functionprint is invoked. If c
is an ’s’ or ’S’, subs andprint are both invoked. Similar actions take place for other values. If c does
not mention any of the values mentioned in the case statements, the default statement (in this case, an error
function) is invoked.

The general form of a switch is

switch (expression) statement

The statement is always complex, and contains statements of the form

case constant:

The constants in our example are characters, but they could also be numbers. The expression is evaluated,
and its value matched against the possible cases. If a match is found, execution continues at that case.
(Execution may of course fall through from one case to the next, and may transfer around within the switch,
or transfer outside it.) Notice we put multiple cases on several statements.

If no match is found, execution continues at the statement labeleddefault: if it exists; if there is no
match and nodefault , the entire statement part of the switch is skipped.

Thebreak statement forces an immediate transfer to the next statement after the switch statement, i.e., the
statement after the {} which enclose the statement part of theswitch . break may also be used in while
statements in an analogous manner.break is a useful way to avoid useless labels.

27. Formatted IO

In this section, we point to the functionprintf , which is used for producing formatted IO. This function
is so useful that it is actually placed in Appendix C for ready reference.

- 13 -

28. Lots More on IO

File IO is described in much more detail in [1], section 8. This discussion does only the easy things.

Basically, all IO in B is character-oriented, and based on getchar and putchar. By default, these functions
refer to the terminal, and IO goes there unless explicit steps are taken to divert it. The diversion is easy and
systematic, so IO unit switching is quite feasible.

At any time there is one input unit and one output unit;getchar andputchar use these for their input
and output by implication. The unit is a number between -1 and 10 (rather like Fortran file numbers). The
current values are stored in the external variablesrd.unit andwr.unit so they can be changed easily,
although most programs need not use them directly. When execution of a B program begins,rd.unit is
0, which means "read from terminal", andwr.unit is -1, meaning "write on terminal".

To do input from a file, we setrd.unit to a value, and assign a file name to that unit. Then, until the
assignment or the value is changed,getchar reads its characters from that file. Thus, to open for reading
an ascii permanent file called "cat/file", as input unit 5,

openr(5, "cat/file")

The first argument is the unit number, and the second is a cat/file description. (An empty string means the
terminal.) rd.unit is set to 5 byopenr so successive calls togetchar , getstr , etc., will fetch char-
acters from this file. If the file is non-existent or if we read to end of file, all successive calls produce ’*e’.

Writing is much the same:

openw(u,s)

opens ascii file s as unit u for writing. Successive calls toputchar , putstr , printf , etc., will place
output on file s.

If the IO unit mentioned inopenr or openw is already open, it is closed before the next use. That is, any
output for output files is flushed and end of file written; any input from input files is thrown away. Files
are also closed this way upon normal termination.

Programs which have only one input and one output unit open simultaneously need not reference
rd.unit andwr.unit explicitly, since the opening routines will do It automatically. Otherwise, don’t
forget to declare them in anextrn statement.

The functionflush closes the current output unit without writing a terminating newline character. If this
file is the terminal, this is the way to force a prompting question before reading a response on the same line:

putstr("old or new?");
flush();
getstr(s);

prints

old or new?

and reads the response from the same line.

File names may only be "cat/file", "/file", or "file": no permissions, passwords subcatalogs or alternate
names are allowed. File names containing a ’/’ are assumed to be permanent files; if you try to open a per-
manent file which is already accessed, it is released and reaccessed. If it can’t be found, the access fails. A
file name without ’/’ may or may not be a permanent file, so if a file of this name is already accessed, it is
used without question. If it is not already accessed, a search of the user’s catalog is made for it. If it can’t
be found there either, and writing is desired, a temporary file is made.

The functionreread is used to re-read a line. Its primary function is that if it is called before the first call
to getchar , it retrieves the command line with which the program was called.

reread();
getstr(s);

fetches the command line, and puts it into string s.

- 14 -

29. System Call from TSS

TSS users can easily execute other TSS subsystems from within a running B program, by using the library
functionsystem . For instance,

system("./rj (w) ident;file");

acts exactly as if we had typed

./rj (w) ident;file

in response to "SYSTEM?". The argument ofsystem is a string, which is executed as if typed at "SYS-
TEM?" level. (No ’*n’ is needed at the end of the string.) Return is to the B program unless disaster
strikes. This feature permits B programs to use TSS subsystems and other programs to do major functions
without bookkeeping or core overhead.

We can also useprintf (->Appendix C) to write on the "system" IO unit, which is predefined as -1. All
output written on unit -1 acts as if typed at "SYSTEM?" level. Thus,

extrn wr.unit;

wr.unit = -1;
opts = "(w)";
fname = "file";
printf("./rj %s ident;%s*n", opts,fname’);

will set the current output unit to -1, the system, and then print on it usingprintf to format the string.
This example does the same thing as the last, but the RUNJOB options and the file names are variables,
which can be changed as desired. Notice that this time a ’*n’ is necessary to terminate the line.

Because of serious design failings in TSS, there is generally no decent way to send more than the command
line as input to a program called this way, and no way to retrieve output from it.

30. Recursion

putnumb(n) {
auto a;
if(a=n/10) /* assignment, not equality test */

putnumb(a); /* recursive */
putchar(n%10 + ’0’);

}

This simplified version of the library functionputnum illustrates the use of recursion. (It only works for
n>0.) "a" is set to the quotient of n/10; if this is non-zero, a recursive call on putnumb is made to print the
quotient. Eventually the high-order digit of n will be printed, and then as each invocation of putnumb is
popped up, the next digit will be added on.

31. Argument Passing for Functions

There is a subtlety in function usage which can trap the unsuspecting Fortran programmer. Argument pass-
ing is call by value", which means that the called function is given the actual values of its arguments, and
doesn’t know their addresses. This makes it very hard to change the value of one of the input arguments!

For instance, consider a function flip(x,y) which is to interchange its arguments. We might naively write

flip(x,y){
auto t;
t = x;
x = y;
y = t;

}

but this has no effect at all. (Non-believers: try it!) What we have to do is pass the arguments as explicit
addresses, and use them as addresses. Thus we invokeflip as

- 15 -

flip(&a,&b);

and the definition of flip is

flip(x,y){
auto t;

t = *y;
*x = *y;
*y = t;
}

(And don’t leave out the spaces on the right of the equal signs.) This problem doesn’t arise if the argu-
ments are vectors, since a vector is represented by its address.

32. Calling Fortran and GMAP Subroutines from B Programs

As we mentioned, B doesn’t have floating point, multi-dimensional arrays, and similar things that Fortran
does better. A B program,callf ,
allows B programs to call Fortran and GMAP subroutines, like this:

callf(name, a1,a2, . . .,a10)

Herename is the Fortran function or subroutine to be used, and the a’s are the zero or more arguments of
the subroutine.

There are some restrictions oncallf , related to the "call by value" problem mentioned above. First, vari-
ables that are not vectors or strings must be referenced by address: use "&x" instead of "x" as an argument.
Second, no constants are allowed among the arguments, because the construction "&constant" is illegal in
B. We can’t say

tod = callf(itimez,&0)

to get the time of day; instead we have to use

t=0;
tod = callf(itimez,&t) ;

Third, it is not possible to return floating-point function values from Fortran programs, since the results are
in the wrong register. They must be explicitly passed back as arguments. Thus we can’t say

s = callf(sin,&x)

but rather

callf(sin2,&x,&s)

where sin2 is defined as

subroutine sin2(x,y)
y = sin(x)
return
end

Fourth, callf isn’t blindingly efficient, since there’s a lot of overhead converting calling sequences.
(Very short GMAP routines to interface with B programs can often be coded quite efficiently see [1], sec-
tion 11.)

1273-bwk-pdp

B. W. KERNIGHAN

Attached
References
Appendix A,B,C,D

- 16 -

References

[1] Johnson, S. C. A User’s Reference to B on MH-TSS. Bell Laboratories memorandum.

[2] Canaday, R. H., Ritchie, D. M. Bell Laboratories BCPL. Bell Laboratories memorandum.

Appendix A: B Compiler Diagnostics

Diagnostics consist of two letters, an optional name, and a source line number. Because of the free form
input, the source line number may be too high.

$) - { } imbalance
() - () imbalance
*/ - /**/ imbalance
[] - [] imbalance
>c - case table overflow (fatal)
>e - expression stack overflow (fatal)
>i - label table overflow (fatal)
>s - symbol table overflow (fatal)
ex - expression syntax error
lv - address expected
rd name name redeclaration - multiple definition
sx keyword statement syntax error
un name undefined name - line number is last line

of function where definition is missing
xx - syntax error in external definition

Appendix B: Escape Sequences and Typography

Escape sequences are used in character constants and strings to obtain characters which for one reason or
another are hard to represent directly. They consist of ’*-’, where ’-’ is as below:

*0 null (ascii NUL = 000)
*e end of string (ascii EOT = 004)
*({
*) }
*t tab
** *
*’ ’
*" "
*n newline

Users of non-ascii devices like model 33/35 Teletypes or IBM 2741’s should use a reasonably clever text-
editor like QED to create special characters for B programs.

Appendix C: printf for Formatted IO

printf(fmt,a1,a2,a3,.. . ,a10)

This function writes the arguments ai (from 0 to 10 of which may be present) onto the current output stream
under control of the format stringfmt . The format conversion is controlled by two-letter sequences of the
form ’%x’ inside the stringfmt , where x stands for one of the following:

c -- character data (ascii)
d -- decimal number
o -- octal number
s -- character string

The characters infmt which do not appear in one of these two character sequences are copied without
change to the output.

- 17 -

Thus the call

printf("%d + %o is %s or %c*n", 1,-1,"zero",’0’);

leads to the output line

1 + 777777777777 is zero or 0

As another example, a permanent file whose name is in the string s can be created with size n blocks and
general read permission by usingprintf together with the system output unit (->29) and the "filsys" sub-
system:

wr.unit = -1 ;
printf("filsys cf %s,b/%d/,r*n",s,n);

Appendix D: Binding Strength of Operators

Operators are listed from highest to lowest binding strength; there is no order within groups. Operators of
equal strength bind left to right or right to left as indicated.

++ -- * & - ! ˜ (unary) [RL]
* / % (binary) [LR]
+ - [LR]
>> << [LR]
> < <= >=
== !=
& [LR]
ˆ [LR]
 [LR]
?: [RL]
= =+ =- etc. (all assignment operators) [RL]

Appendix E: Index

[omitted]

