April 13, 2020

Optical Nonlinearity Monitoring and Launch Power Optimization by Artificial Neural Networks

  • Bigo S.
  • Ghazisaeidi A.
  • Jenneve P.
  • Lonardi M.
  • Pesic J.
  • Ramantanis P.
  • Rossi N.

In this paper, we extend our conference contribution, where we presented a linear-to-nonlinear power ratio monitor based on a shallow artificial neural network and the optical power spectrum. The neural network is trained with experimental pairs of input single-channel optical power spectra and output optimal power corrections, i.e., power amendments that lead to the power maximizing the performance in terms of the signal-to-noise ratio. The technique is tested and shows the capability of providing up to 1 dB of signal-to-noise ratio gain in the ±3 dB region around the actual optimal power. Furthermore, the neural network does not recommend power variations resulting in a severe SNR penalty (max -0.12 dB). With this contribution, we extend the conference contribution by providing further insight into the theoretical background and some additional technical results in the direction of proving the connection between the optical power spectrum and the optimal power correction, i.e., the linear-to-nonlinear power ratio.

View Original Article

Recent Publications

May 01, 2020

A Packaged 0.01-26-GHz Single-Chip SiGe Reflectometer for Two-Port Vector Network Analyzers

  • Chung H.
  • Ma Q.
  • Rebeiz G.
  • Sayginer M.

© 1963-2012 IEEE. This article presents a packaged SiGe BiCMOS reflectometer for 0.01-26-GHz two-port vector network analyzers (VNAs). The reflectometer chip is composed of a resistive bridge coupler and two wideband heterodyne receivers for coherent magnitude and phase detection. In addition, a high-linearity receiver channel is designed to accommodate 20 ...

August 01, 2019

Protecting photonic quantum states using topology

  • Blanco-Redondo A.

The use of topology to protect quantum information is well-known to the condensed-matter community and, indeed, topological quantum computing is a bursting field of research and one of the competing avenues to demonstrate that quantum computers can complete certain problems that classical computers cannot. In photonics, however, we are only ...

May 01, 2019

Digital networks at the nexus of productivity growth

  • Kamat S.
  • Prakash S.
  • Saniee I.
  • Weldon M.

This paper takes a fresh look at the debate over the relationship between digital technology and productivity. The argument of economic historian Robert J. Gordon is that digital technology will not lead to increases in productivity such as we saw in the last century, based on his analysis of the ...