March 16, 2020

Predicted annual energy yield of III-V/c-Si tandem solar cells: modelling the effect of changing spectrum on current-matching

  • Frizzell R.
  • Lei S.
  • Mathews I.

High efficiencies of >30% are predicted for series-connected tandem solar cells when current-matching is achieved between the wide-bandgap top cell and silicon bottom cell. Sub-cells are typically optimised for current-matching based on the standard AM1.5G spectrum, but in practice, the incident radiation on a solar cell can be very different from this standard due to the effects of the sun's location in the sky, atmospheric conditions, total diffuse element etc. The resulting deviations in spectral content from optimum conditions lead to current mismatch between tandem cell layers that adversely affects the device's performance. To investigate the impact of this issue the energy yield (%) of tandem solar cells comprising a III-V wide-bandgap solar cell connected electrically and optically in series with a silicon bottom cell was simulated over a full year using measured spectral data from Denver, CO. Top cells with bandgaps from 1.5-1.9 eV were modeled using an external radiative efficiency method. The predicted annual energy yields were as high as 28% with an optimum 1.8 eV top cell, only 2.5% lower (absolute) than the AM1.5G predicted efficiency. The annual energy yield of tandem cells with no current-matching constraint, i.e. parallel-connected devices, was also simulated. Here the difference between series and parallel connections were only significant for non-optimum bandgap combinations. Our results indicate that AM1.5G based optimization of sub-cells can be effectively employed to achieve high energy yields of >25% for III-V/Si tandem solar cells in mid-latitude US locations, despite the continuous variation in spectra throughout a calendar year.

View Original Article

Recent Publications

May 01, 2020

A Packaged 0.01-26-GHz Single-Chip SiGe Reflectometer for Two-Port Vector Network Analyzers

  • Chung H.
  • Ma Q.
  • Rebeiz G.
  • Sayginer M.

© 1963-2012 IEEE. This article presents a packaged SiGe BiCMOS reflectometer for 0.01-26-GHz two-port vector network analyzers (VNAs). The reflectometer chip is composed of a resistive bridge coupler and two wideband heterodyne receivers for coherent magnitude and phase detection. In addition, a high-linearity receiver channel is designed to accommodate 20 ...

August 01, 2019

Protecting photonic quantum states using topology

  • Blanco-Redondo A.

The use of topology to protect quantum information is well-known to the condensed-matter community and, indeed, topological quantum computing is a bursting field of research and one of the competing avenues to demonstrate that quantum computers can complete certain problems that classical computers cannot. In photonics, however, we are only ...

May 01, 2019

Digital networks at the nexus of productivity growth

  • Kamat S.
  • Prakash S.
  • Saniee I.
  • Weldon M.

This paper takes a fresh look at the debate over the relationship between digital technology and productivity. The argument of economic historian Robert J. Gordon is that digital technology will not lead to increases in productivity such as we saw in the last century, based on his analysis of the ...