December 01, 2019

A Deep Reinforcement Learning Approach for VNF Forwarding Graph Embedding

  • Hadjadj-Aoul Y.
  • Outtagarts A.
  • Quang P.

Network Function Virtualization (NFV) and service orchestration simplify the deployment and management of network and telecommunication services. The deployment of these services requires, typically, the allocation of Virtual Network Function-Forwarding Graph (VNF-FG), which implies not only the fulfillment of the service's requirements in terms of Quality of Service (QoS), but also considering the constraints of the underlying infrastructure. This topic has been well-studied in existing literature, however, its complexity and uncertainty of available information unveil challenges for researchers and engineers. In this paper, we explore the potential of reinforcement learning techniques for the placement of VNF-FGs. However, it turns out that even the most well-known learning technique is ineffective in the context of a large-scale action space. In this respect, we propose approaches to find out feasible solutions while improving significantly the exploration of the action space. The simulation results clearly show the effectiveness of the proposed learning approach for this category of problems. Moreover, thanks to the deep learning process, the performance of the proposed approach is improved over time.

View Original Article

Recent Publications

May 01, 2020

A Packaged 0.01-26-GHz Single-Chip SiGe Reflectometer for Two-Port Vector Network Analyzers

  • Chung H.
  • Ma Q.
  • Rebeiz G.
  • Sayginer M.

© 1963-2012 IEEE. This article presents a packaged SiGe BiCMOS reflectometer for 0.01-26-GHz two-port vector network analyzers (VNAs). The reflectometer chip is composed of a resistive bridge coupler and two wideband heterodyne receivers for coherent magnitude and phase detection. In addition, a high-linearity receiver channel is designed to accommodate 20 ...

August 01, 2019

Protecting photonic quantum states using topology

  • Blanco-Redondo A.

The use of topology to protect quantum information is well-known to the condensed-matter community and, indeed, topological quantum computing is a bursting field of research and one of the competing avenues to demonstrate that quantum computers can complete certain problems that classical computers cannot. In photonics, however, we are only ...

May 01, 2019

Digital networks at the nexus of productivity growth

  • Kamat S.
  • Prakash S.
  • Saniee I.
  • Weldon M.

This paper takes a fresh look at the debate over the relationship between digital technology and productivity. The argument of economic historian Robert J. Gordon is that digital technology will not lead to increases in productivity such as we saw in the last century, based on his analysis of the ...