January 01, 2019

On Tracking the Physicality of Wi-Fi: A Subspace Approach

  • Alloulah M.
  • Isopoussu A.
  • Kawsar F.
  • Min C.

Wi-Fi channel state information (CSI) has emerged as a plausible modality for sensing different human activities as a function of modulations in the wireless signal that travels between wireless devices. Until now, most research has taken a statistical approach and/or purpose-built inference pipeline. Although interesting, these approaches struggle to sustain sensing performances beyond experimental conditions. As such, the full potential of CSI as a general-purpose sensing modality is yet to be realised. We argue a universal approach with well-grounded formalisation is necessary to characterise the relationship between wireless channel modulations (spatial and temporal) and human movement. To this end, we present a formalism for quantifying the changing part of the wireless signal modulated by human motion. Grounded in this formal- isation, we then present a new subspace tracking technique to describe the channel statistics in an interpretable way, which succinctly contains the human modulated part of the channel. We characterise the signal and noise subspaces for the case of uncontrolled human movement. Our results demonstrate that proposed channel statistics alone can robustly reproduce state of the art application-specific feature engineering baseline, however, across multiple usage scenarios. We expect, our universal channel statistics will yield an effective general- purpose featurisation of wireless channel measurements and will uncover opportunities for applying CSI for a variety of human sensing applications in a robust way.

View Original Article

Recent Publications

May 01, 2020

A Packaged 0.01-26-GHz Single-Chip SiGe Reflectometer for Two-Port Vector Network Analyzers

  • Chung H.
  • Ma Q.
  • Rebeiz G.
  • Sayginer M.

© 1963-2012 IEEE. This article presents a packaged SiGe BiCMOS reflectometer for 0.01-26-GHz two-port vector network analyzers (VNAs). The reflectometer chip is composed of a resistive bridge coupler and two wideband heterodyne receivers for coherent magnitude and phase detection. In addition, a high-linearity receiver channel is designed to accommodate 20 ...

August 01, 2019

Protecting photonic quantum states using topology

  • Blanco-Redondo A.

The use of topology to protect quantum information is well-known to the condensed-matter community and, indeed, topological quantum computing is a bursting field of research and one of the competing avenues to demonstrate that quantum computers can complete certain problems that classical computers cannot. In photonics, however, we are only ...

May 01, 2019

Digital networks at the nexus of productivity growth

  • Kamat S.
  • Prakash S.
  • Saniee I.
  • Weldon M.

This paper takes a fresh look at the debate over the relationship between digital technology and productivity. The argument of economic historian Robert J. Gordon is that digital technology will not lead to increases in productivity such as we saw in the last century, based on his analysis of the ...