September 15, 2018

Energy-Efficient Multicell Multigroup Multicasting with Joint Beamforming and Antenna Selection

  • Chatzinotas S.
  • Juntti M.
  • Ottersten B.
  • Pennanen H.
  • Tervo O.
  • Tran L.

© 1991-2012 IEEE. This paper studies the energy efficiency and sum rate tradeoff for coordinated beamforming in multicell multiuser multigroup multicast multiple-input single-output systems. We first consider a conventional network energy efficiency maximization (EEmax) problem by jointly optimizing the transmit beamformers and antennas selected to be used in transmission. We also account for per-antenna maximum power constraints to avoid nonlinear distortion in power amplifiers and user-specific minimum rate constraints to guarantee certain service levels and fairness. To be energy efficient, transmit antenna selection is employed. It eventually leads to a mixed-Boolean fractional program. We then propose two different approaches to solve this difficult problem. The first solution is based on a novel modeling technique that produces a tight continuous relaxation. The second approach is based on sparsity-inducing method, which does not require the introduction of any Boolean variable. We also investigate the tradeoff between the energy efficiency and sum rate by proposing two different formulations. In the first formulation, we propose a new metric, that is, the ratio of the sum rate and the so-called weighted power. Specifically, this metric reduces to EEmax when the weight is 1, and to sum rate maximization when the weight is 0. In the other method, we treat the tradeoff problem as a multiobjective optimization for which a scalarization approach is adopted. Numerical results illustrate significant achievable energy efficiency gains over the method where the antenna selection is not employed. The effect of antenna selection on the energy efficiency and sum rate tradeoff is also demonstrated.

View Original Article

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...