July 01, 2018

Opportunistic Spatial Preemptive Scheduling For URLLC and eMBB Coexistence in Multi-User 5G Networks

  • Esswie A.
  • Pedersen K.

The fifth generation (5G) of the mobile networks is envisioned to feature two major service classes: ultra-reliable low-latency communications (URLLC) and enhanced mobile broadband (eMBB). URLLC applications require a stringent one-way radio latency of 1 ms with 99.999% success probability while eMBB services demand extreme data rates. The coexistence of the URLLC and eMBB quality of service (QoS) on the same radio spectrum leads to a challenging scheduling optimization problem, that is vastly different from that of the current cellular technology. This calls for novel scheduling solutions which cross-optimize the system performance on a user-centric, instead of network-centric basis. In this paper, a null-space-based spatial preemptive scheduler for joint URLLC and eMBB traffic is proposed for densely populated 5G networks. The proposed scheduler framework seeks for cross-objective optimization, where critical URLLC QoS is guaranteed while extracting the maximum possible eMBB ergodic capacity. It utilizes the system spatial degrees of freedom in order to instantly offer an interference-free subspace for critical URLLC traffic. Thus, a sufficient URLLC decoding ability is always preserved, and with the minimal impact on the eMBB performance. Analytical analysis and extensive system level simulations are conducted to evaluate the performance of the proposed scheduler against the state-of-the-art scheduler proposals from industry and academia. Simulation results show that proposed scheduler offers extremely robust URLLC latency performance with a significantly improved ergodic capacity.

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...