September 07, 2018

Of Kernels and Queues: when network calculus meets analytic combinatorics

  • Bouillard A.
  • Comte C.
  • De Panafieu E.
  • Mathieu F.

Stochastic network calculus is a tool for computing error bounds on the performance of queueing systems. However, deriving accurate bounds for networks consisting of several queues or subject to non-independent traffic inputs is challenging. In this paper, we investigate the relevance of the tools from analytic combinatorics, especially the kernel method, to tackle this problem. Applying the kernel method allows us to compute the generating functions of the queue state distributions in the stationary regime of the network. As a consequence, error bounds with an arbitrary precision can be computed. In this preliminary work, we focus on simple examples which are representative of the difficulties that the kernel method allows us to overcome.

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...