June 05, 2018

Anomaly-Based Intrusion Detection Using Extreme Learning Machine and Aggregation of Network Traffic Statistics in Probability Space

  • Amaury Lendasse
  • Atli B.
  • Buse Atli
  • Holtmanns S.
  • Kalliola A.
  • Lendasse A.
  • Miche Y.
  • Oliver I.

Recently, with the increased use of network communication, the risk of compromising the information has grown immensely. Intrusions have become more sophisticated and few methods can achieve efficient results while the network behavior constantly changes. This paper proposes an intrusion detection system based on modeling distributions of network statistics and Extreme Learning Machine (ELM) to achieve high detection rates of intrusions. The proposed model aggregates the network traffic at the IP subnetwork level and the distribution of statistics are collected for the most frequent IPv4 addresses encountered as destination. The obtained probability distributions are learned by ELM. This model is evaluated on the ISCX-IDS 2012 dataset, which is collected using a real-time testbed. The model is compared against leading approaches using the same dataset. Experimental results show that the presented method achieves an average detection rate of 91% and a misclassification rate of 9%. The experimental results show that our methods significantly improve the performance of the simple ELM despite a trade-off between performance and time complexity. Furthermore, our methods achieve good performance in comparison with the other few state-of-the-art approaches evaluated on the ISCX-IDS 2012 dataset.

View Original Article

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...