June 01, 2018

Extreme Learning Machines for VISualization+R: Mastering Visualization with Target Variables

  • Akusok A.
  • Baek S.
  • Gritsenko A.
  • Lendasse A.
  • Miche Y.

© 2017, Springer Science+Business Media, LLC, part of Springer Nature. The current paper presents an improvement of the Extreme Learning Machines for VISualization (ELMVIS+) nonlinear dimensionality reduction method. In this improved method, called ELMVIS+R, it is proposed to apply the originally unsupervised ELMVIS+ method for the regression problems, using target values to improve visualization results. It has been shown in previous work that the approach of adding supervised component for classification problems indeed allows to obtain better visualization results. To verify this assumption for regression problems, a set of experiments on several different datasets was performed. The newly proposed method was compared to the ELMVIS+ method and, in most cases, outperformed the original algorithm. Results, presented in this article, prove the general idea that using supervised components (target values) with nonlinear dimensionality reduction method like ELMVIS+ can improve both visual properties and overall accuracy.

View Original Article

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...