January 01, 2018

Linear Programming Bounds for Entanglement-Assisted Quantum Error-Correcting Codes by Split Weight Enumerators

  • Ashikhmin A.
  • Lai C.

Linear programming approaches have been applied to derive upper bounds on the size of classical and quantum codes. In this paper, we derive similar results for general quantum codes with entanglement assistance by considering a type of split weight enumerator. After deriving the MacWilliams identities for these enumerators, we are able to prove algebraic linear programming bounds, such as the Singleton bound, the Hamming bound, and the first linear programming bound. Our Singleton bound and Hamming bound are more general than the previous bounds for entanglement-assisted quantum stabilizer codes. In addition, we show that the first linear programming bound improves the Hamming bound when the relative distance is sufficiently large. On the other hand, we obtain additional constraints on the size of Pauli subgroups for quantum codes, which allow us to improve the linear programming bounds on the minimum distance of quantum codes of small length. In particular, we show that there is no $[[27, 15, 5]]$ or $[[28, 14, 6]]$ stabilizer code. We also discuss the existence of some entanglement-assisted quantum stabilizer codes with maximal entanglement. As a result, the upper and lower bounds on the minimum distance of maximal-entanglement quantum stabilizer codes with length up to 20 are significantly improved.

View Original Article

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...