A New Capacity Scaling Law in Ultra-Dense Networks

  • Guoqiang Mao
  • Lopez-Perez D.
  • Ming Ding

We discover a new capacity scaling law in ultradense networks (UDNs) under practical system assumptions, such as a general multi-piece path loss model, a non-zero base station (BS) to user equipment (UE) antenna height difference, and a finite UE density. The intuition and implication of this new capacity scaling law are completely different from that found in year 2011. That law indicated that the increase of the interference power caused by a denser network would be exactly compensated by the increase of the signal power due to the reduced distance between transmitters and receivers, and thus network capacity should grow linearly with network densification. However, we find that both the signal and interference powers become bounded in practical UDNs, which leads to a constant capacity scaling law. As a result, network densification should be stopped at a certain level for a given UE density, because the network capacity will reach its limit due to (i) the bounded signal and interference powers, and (ii) a finite frequency reuse factor because of a finite UE density. Our new discovery on the constant capacity scaling law also resolves the recent concerns about network capacity collapsing in UDNs, e.g., the capacity crash due to a non-zero BS-to-UE antenna height difference, or a bounded path loss model of the near-field (NF) effect, etc.

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...