Delay versus Stickiness Violation Trade-offs for Load Balancing in Large-Scale Data Centers

  • Borst S.
  • Liang Q.

Load balancing provides a key mechanism for achieving efficient resource allocation in data centers, ensuring high levels of server utilization and robust application performance. The load balancing techniques implemented in current data centers tend to rely on mapping packets to a server IP address through a hash value calculated from the flow five-tuple in the packet header. The hash calculation allows extremely fast packet forwarding (at line speed) and provides flow 'stickiness', meaning that all packets belonging to the same flow get dispatched to the same server. Unfortunately, a nominal static hashing operation may not always yield an optimal degree of load balancing, e.g. due to variations in server processing speeds or in traffic characteristics of flows. Dynamic weighted hashing, e.g. implemented via 'bins' to add a level of indirection, provides a natural way to mitigate load imbalances. Specifically, bin reassignment to adjust the hashing weights and redirect flows can improve the degree of load balancing and hence the delay performance, but at the expense of flow stickiness violation and possible disruption of active flows. In the present paper we examine the fundamental trade-off between flow stickiness violation and "delay" performance, where "delay" refers to either bin reassignment delay or packet-level latency. We establish that relaxing the stickiness requirement by a minuscule amount yields a notable reduction in the bin reassignment delay, translating into a significant speed-up of the bin reassignment process. We further demonstrate that flow stickiness violation can help improve packet latency performance even once the bin reassignment process has reached an equilibrium where the structural mismatches between traffic loads and server capacities have been resolved. In particular, a minor level of stickiness violation tolerance is highly effective in clipping the tail of the latency distribution.

Recent Publications

January 01, 2018

Fair Dynamic Spectrum Management for QRD-Based Precoding with User Encoding Ordering in Downstream G.fast Transmission

In next generation DSL networks such as G.fast, employing discrete multi-tone transmission in high frequencies up to 212 MHz, the crosstalk among lines reaches very high levels. To precompensate the crosstalk in downstream transmission, QRD-based precoding has been proposed as a near-optimal dynamic spectrum management (DSM) technique. However, the performance ...

January 01, 2018

Practical Mitigation of Passive Intermodulation in Microstrip Circuits

This paper presents new experimental evidence and a novel practical approach for mitigation of passive intermodulation (PIM) in microstrip circuits fabricated on commercial printed circuit board laminates. The mechanisms of distributed PIM in microstrip circuits are reviewed and a phenomenology of PIM generation due to locally enhanced electromagnetic fields at ...

January 01, 2018

Efficient Cooperative HARQ for Multi-Source Multi-Relay Wireless Networks

In this paper, we compare the performance of three different cooperative Hybrid Automatic Repeat reQuest (HARQ) protocols for slow-fading half-duplex orthogonal multiple access multiple relay channel. Channel State Information (CSI) is available at the receiving side of each link only. Time Division Multiplexing is assumed, where each orthogonal transmission occurs ...