An Approach for Call Logs Anonymization Using Machine Learning

  • Denoyer Ludovic
  • Gallinari Patrick
  • Maag M.

Today it is difficult and in most of the cases it is impossible for a data owner to release call logs in a completely safe environment without any risk of individuals re-identification. However, call logs analysis is very important for research purposes or for marketing applications. Moreover, since the arrival of the Web2.0 external information available on the Internet significantly increased the risk to allow adversaries to perform re-identification in anonymized data. Methods used to anonymize call logs for a third party release are usually using naive anonymization combined with noise adding or to data modification in order to be robust to a certain type of attack. In a context where the attacks can be very diversified and the measures to be preserved on the data are complex, we proposed in a previous paper a generic method for anonymization using machine learning techniques applied with success on simple graphs. We now propose an approach for anonymization based on two different machine learning techniques applied with success on graphs with oriented multiple timestamped labeled edges. Our solution aims to automatically learn an anonymization parameterized function in a given context and allows a safer release for call logs issued from social networks or from telecommunication networks.

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...