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I. The Discrete Case

Introduction

The recent development of various methods of modulation
such as PCM and PP! which exchange bandwidth for signal to noise
ratio has intensified the interest in 2 ~eneral theory of communi-
cation. A basis for such a theory is contained in the important

2 on this subject. In the present

papers of Nyquist1 and Hartley
paper we will extend the theory to include a number of new factors,
in particular the effect of noise in the channel, and the savings
possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.
The fundamental problem of communication is that of re-
producing at one point either exactly or apprcximately a message
selected at another point. Frequently the messages have meaning;
that is they refer to or are correlated according to some system
with certain physical or conceptual entities. These semantic
aspects of communicatiocn are irrelevant to the engineering problem,
The significant aspect is that the actual message is one selected

from a set of possible messages. The system must be designed to

operate for each possible selection, not just the one which will

actually be chosen since this is unknown at the time of design.

lNyqu1st H., "Certain Factors .iffecting Telegraph Speed", Bell
Systein Technlca1 Journal, April 1924, p.324.
"Certain 1op1cs in 1e1egranﬁ Transmission Theory",
A.I.E.E. Trans., v.47, April 1943, p,ol7.

Hartley, R.V.L., "Transmission of Information™, Bell System
Technical Journal, July 1928, p,535.
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If the number of messages in the set is finite then this

o~ number of any monotonic function of this number can be regarded as

a measure of the information produced when one message is chosen
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from the set, all choices being equally likely. As was pointed out

by Hartley the most natural choice is the logarithmic function.

Although this definition must be generalized considerably when we

consider the influence of the statistics of the message and when

we have a continuous range of messages, we will in all cases use

an essentially logarithmic messure,

The logarithmic measure is more convenient for various

g reasons.

1., It is practically more useful. Parameters of engineering
importance such as time, bandwidth, number of relays,
etc., tend to vary linearly with the logarithm of the
number of possibilities. For example, adding one relay
to a group doubles the number of possible states of the
relays. It adds 1 to the base two logarithm of this
number. Doubling the time roughly sguares the number
of possible messages, or doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper

measure, This is closely related to 1 since we in-

tuitively mezsure entities by linear comparison with
common standards. One feels, for example, that two
punched cards should have twice the capacity of one
for information storage, and two identical channels

twice the czpacity of one for transmitting information.
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3. It is mathematically more suitable. Many of the
limiting operations are simple in terms of‘the logarithm
but would recuire clumsy restatement in terms of the
number of possibilities.

The choice of a logarithmic base corresponds to the

choice of a unit for measuring information. If the base two is
used the resulting units may be called binary digits, or more
briefly bits a word suggested by J. ''. Tukey. A device with two
stable positions such as a relay or a flip-flop circuit can store
one bit of information. N such devices can store N bits, since
the total number of possible states is ZN and log, 2N= N. If the
base 10 is used the units mey be called decimal digits. Since
log2 M= loglO M log2 10
3.32 loglo M,

a decimal digit is about 3-1/3 bits. 4 digit wheel on a desk

i

computing michine has ten stable positions and therefore has a

storage capacity of one decimal digit. In analytical work where

integration and differentiation are involved the base e is some-
times useful. The resulting units of information will be called
natural units. Change from the base a to base b merely requires
multiplication by logy, a.

By a communication system we will mean a system of the
type indicated schematically in Fig. 1. It consists of essentially

five parts:




l. An information source which produces a message or

sequence of messages to be communicated to the receiving terminal.
The message may be of various types, e.g. (a) A sequence of letters
as in a telegraph or teletype system, (b) A single function of
time f(t) as in radio or telerhony. (c) A function of time and
other variables as in black and white television. Here the
message may be thought of as a function f(x,y,t) of two space
coordinates and time, the light intensity at point (x,y) and

time t on a pickup tube plate. (d) Two or more functions of time,
say f(t), g(t), h(t). This is the case in "three dimensional"
sound transmission or if the system is intended to service several
individual channels in multiplex. {(e) Several functions of several
variables. 1In color television the message consists of three
functions f(x,y,t), g{x,y,t), hi{x,y,t) defined in a three dimen-
sional continuum. 'Je may also thini of these three functions as
components of a vector field defined in the region. Similarly
several black and white television sources would produce "messages"
consisting of a2 number of functions of three variables. (f) Various
combinations also occur, for example in television with an esso-
ciated audic channel,

2. A transmitter which operates on the messaze in some way

to procduce & csignal suitable for transmission over the channel.
In telephony this operation consists merely of changing sound

pressure into a proportional eliectrical current. In telegraphy we




have an encoding operation which produces a sequence of dots,
dashes and spaces on the channel corresponding to the message.
In a multiplex PC!M system the different speech functions must be
sampled, compressed, quantized and encoded, and finally interleaved
properly to construct the signal. Vocoder systems, televisicn,
and frequency modulation are other examples of complex operations
applied to the message to obtain the signal,.

3. The channel is merely the medium used to transmit the
signal from transmitter to receiver. It may be a pair of wires,
a coexial cable, a band of radio frequencies, a beam of light, etc.

L. The receiver ordinarily performs the inverse operation
of that done by the transmitter, reconstructing the message from
the signal.

5. The destination is the person {(cr thing) for whom the
message is intended.

‘le wish to consider certain general nroblems involving
communication systems. To do this it is first necessary to repre-
sent the various elements involved &s mathematical entities,
suitably idealized from their physical counterparts. ‘e may
roughly classify communication systems into three main categories,
discrete, continuous and mixed. By a discrete system we will
mean one in which both the message and the signal are a sequence
of discrete symbols. A typiczl case is telegraphiv where the
message is a sequence of letters 2nd the signal a sequence of

dots, dashes and spaces. .. continuous system is one in which
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the message and signal are both treated as continuous functions
e.g. radioc or television. ./ mixed system is one in which both
discrete and continuous variables appear, e.g., PCM transmission
of speech.

/e first consider the discrete case. This case has
applications not only in communication theory, but also in crypto-
graphy, the theory of computing machines, the design of telephone

exchanges and other fields.
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PART I: DISCRETE NOISELESS SYSTEMS

1. The Discrete Noiseless Channel

Teletype and telegraphy are two simple examples of a
discrete channel for transmitting information. Generally, a dis-
crete channel will mean a system whereby a sequence of choices
from a finite set of elementary symbols Sl,...,Sn can be trans-
mitted from one point to another. These symbols Si are assumed
to each have a certain duration in time ti seconds {not necessarily
the same for different Si’ for example the dots and dashes in
telegraphy). It is not recuired that all possible sequences of
the Sj be capable of transmission on the system; certain sequences
only may be allowed. These will be possible signals for the
channel. Thus in telegraphy suppose the symbols are: (1) A dot,
consisting of line closure for a unit of time and then line open
for a unit of time. {2) A dash, consisting of three time units
of closure and one unit open. (3) A letter space consisting of
three units of line open. (4) A word space of six units of line
open. 'le might place the restriction on allowable sequences that
no spaces follow each other (for if two letter spaces are adjacent,
it is identical with a word space). The gquestion we now consider
is how one can measure the capacity of such a channel to transmit
information.

In the teletype case where all symbols are of the same
duration, and any sequence of the 32 symbols is allowed, the answer
is easy. Each symbcl represents 5 bits of information. If the

system transmits n symbols per second it is natural to say that
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the channel has a capacity of 5n bits per second. This does not
mean that the teletype channel will always be transmitting infor-
mation at this rate---this is the maximum possible rate and whether
or not the actual rate reaches this maximum depends on the source
of information which feeds the channel as will appear later.

In the riore generzl case with different lengths of
symbols and constraints on the allowed sequences, we make the
following definition:

Definition: The capacity C of a discrete channel is given by

c = Lim log N(T)
T+ T
where N(T) is the number of allowed signals of duration T.
It is eacsily seen that in the teletype case this reduces
to the previous result, It can be shown that the limit in question
will exist as a finite number in most cases of interest. Suppose

all sequences of the symbols Sy ... S, are allowed and these sym-

bols have durations tl eee toe "That is the channel capacity? If

N(t) represents the number of sequences of duration t we have
N(t) = H(t-ty} + N{t-tp) + ... + N(t-t,)

The total number is equal to the sum of the numbers of sequences
ending in S3, 57, ..., Sn 2nd these are N{t-tq), N(t-tz), coay
N(t-t,), respectively. According to a well known result in finite
differences, H(t) is then asynmptotic for large t to x¥ where Xo

0

is the largest real solution of the characteristic equation:
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WLxt2 ., e xtn .

and therefore

log X T
C = "";‘Q‘ = log X,

In case there are restrictions on allowed sequences we
may still often obtain 2 difference equation of this type and find
C from the characteristic enuation. In the telegraphy case
mentioned above

N(t) = N{t-2) + N(t-4) + N(t-5) + N(t-7)
+ N(t-8) + N(t-10)
as we see by counting sequences of symbols according to the last
or next to the last symbol occurring. Hence C is -log p, where pg
is the positive root of 1 = pz + pb + ps + p7 + ns + plO.

A very general type of restriction which may be placed on
allowed sequences is the following. 'Je imagine a number of possible
states a), a, ... a . For each state only certain symbols from
the set S ... Sn can be transmitted {different subsets for the
different stztes). TVhen one of these has been transmitted the
state changes to 2 new state depending both on the old state
and the particular symbol transmitted. The telegraph case is a
simple example of this. There are two states depending on whether
a space was the last symbol transmitted or not., If so then only a
dot or a dash can be sent next and the state alweys changes. If
not, any symbol can be transmitted and the state changes if a
space is sent, otherwice remaining the same. The conditions can

be indicated in a linear graph a&s saown in Fig. 2. The Jjunction




points correspond to the states and the lines indicate the symbols
possible in a state and the resulting state. In appendix 1 it is
shown that if the conditions on allowed sequences can be described
in this form C will exist and can be calculated in accordance with
the following result,

{s) th

ij be the duration of the s

allowable in state i and leads to state j. Then the

Theorem 1: Let b symbol which is
channel capadity C is equal to log '/ where '/ is the

largest real root of the determinant equation:
(s)
b:=
]

W -5..l =0
Is ijl

where Sij =1 if i = j and is zero otherwise,

2. The Discrete Source of Information

We have seen that under very general conditions the
logarithm of the number of possible signals in a discrete channel
increases linearly with time. The capacity to transmit information
can be specified by giving this rzte of increase, the number of
bits per second reguired to specify the particular signal used.

We now consider the information source. How is an
information source to be described mathematically, and how much
information in bits per second is produced in a given source?

The main point at issue is the effect of statistical knowledge
about the source in reducing the required capacity of the channel,
by the use of proper encodins of the information. In telegraphy,

for example, the messages to be transmitted consist of sequences
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of letters. These sequences, however, are not completely random.
In general, they form sentences and have the statistical structure
of, say, English. The letter E occurs more frequently than Q,

the sequencé TH more frequently than XP, etc. The existence of
this structure allows one to make a saving in time (or channel
capacity) by properly encoding the message sequences into signal
sequences, This is already done to a limited extent in telegraphy
by using the shortest channel symbol, a dot, for the most common
English letter E, while the infrequent letters, Q, X, Z are repre-
sented by longer sequences of cdots and dashes. This idea is
carried still further in certain commercial codes where common
words and phrases are represented by four or five letter code
groups with a considerable saving in average time. The standar-
dized greeting and anniversary telegrams now in use extend this

to the point of encoding & sentence or two into a relatively
shorfgsequence of numbers,

We can think of a discrete source as generating the
message symbol by symbol., It will choose successive symbols
according to certain probabilities depending, in general, on
preceding choices as well as the particular symbols in guestion,

A phys:cal system, or a mathematical model of a system which pro-
duces such a sequence of symbols governed by a set of probabilities
is known as a stochastic process. ‘e may consider a discrete
source, t herefore, to be represented by a stochastic process,

Conversely, any stochastic process which produces a discrete
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sequence of symbols chosen from a finite set may be considered

a discrete source. This will include such cases as:

1, Naturzl written languages such as English, German, Chinese,

2. Continuous information sources that have been rendered dis-
crete by some quantizing process. For example, the quantized
speech from a PCM transmitter, or a auantized television sig-
nal.

3. Mathematical cases where we merely define abstractly a sto-
chastic process which generates a sequence of symbols. The
following are examples of such sources.

(&) Suppose we have 5 letters A, B, C, D, E which are
chosen each with probability .2, successive choices
being indevendent. This would lead to a sequence of
which the following is a typical example.
BDCBCECCCADCBLDDAAECETEA
ABBDAEECACEEBAEECBCEAD
This was constructed with the use of a table of random
numbers,*

(B) Using the same 5 letters let the probabilities be
iy o1, 42, 42, .1 respectively, with successive
choices independent., 4 typical message from this
source is then:
AAACDCBDCEALDALDACETDA
EADCABEDADDCIZCAAALAAD

#*Kendall and Smith, "Tables of Random Sampling Numbers",
Cambridge, 1339.
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A more complicated structure is obtained if successive
symbols are not chosen independently but their proba-
bilities depend on preceding letters. In the simplest
case of this type a choice depends only on the preceding
letter and not on ones before that. The statistical
structure can then be described by a set of transition
probabilities pj(j), the probability that letter i is
followed by letter j. The indices i and j range over
all the possible symbols., A second equivalent way of
specifying the structure is to give the "digram" pro-
babilities p{i,j), i.e., the relative frequency of the
digram i j. The letter frequencies p(i), the transition
probabilities pi(j) and the digram probabilities p(i, j)

are related by the following formulas,

p(i) = Z p(i,3) = Z p(§,i) = 2 p(J)p,(4)
J J J J

4S8 a specific example suppose there are three letters

A, B, C with the probability tables:
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(3) (1) (1,35)
S P i LI
Alo ¢ 2 A slo & 1
i 1 16 8 8
c|li 2 1 |2 cli 4 L
2 5 10 27 27 135 135

A typical messzage from this source is the following.
ABBABABABABABABBBABBBBBAB
ABABABABBBACACABBABEBEABRB
ABACBBBABA

The next increase in complexity would involve trigram
frequencies but no more. The choice of a letter would
depend on the preceding two letters but not on the
message before that point. A set of trigram frequencies
p(i,j,k) or eguivalently a set of transition probabili-
ties pij(k) woulé be required. Continuing in this way
one obtains successively more complicated stochastic
processes. In the general n-gram case a set of n-gram
probabilities p(il, iy sees in) or of transition

(ip) is required to

probabilities pi1’iz’ ceey i 4

specify the statistical structure.

Stochastic processes can also be defined which produce
a text consisting of a sequence of "words". Suppose
there are 5 letters A4, B, C, D, E and 16 "words" in the

language with associated probabilities:
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.04 ADEB .04 BED .05 CEED .15 DEED
«05 ADEE .02 BEED .08 DAB .01 EAB
.01 BADD .05 Ca +O4 DAD .05 EE

Suppose successive "words" are chosen independently and
are separated by a space. A typical message might be:
DAB EE A BEBE DEED DTB ADEE ADEE EE DEB BiBt BEBE
BNBE ADEE BED DLED DEED CL.U ADEE A DEED DEED BEBE
CABZD BUBE BED DAB DE=D ADEB
If all the words are of finite length this process is
equivalent to one of the preceding type, but the
description may be simpler in terms of the word
structure and probabilities. ‘e may also generalize
here and introduce transition probabilities between

= .words, etc.

These artificial languages are useful in constructing
simple problems and examples to illustrate various possibilities.
We can also approximate to a naturzl language by means of a
series of simple artificial languages. Tne zero order approxi-
mation is obtained by cnoosing all letters with the same proba-
bility and independently. The first order approximation is
obtained by choosing successive letters independently but éach
letter having the same probability that it does in the natural
language. Thus in the first order zpproximation to English E
is chosen with probability ,12 (its frejuency in normal English)

and W with probability .02, but there is no influence between
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ad jacent letters and no tendency to form the preferred digrams
such as TH, ED, etc. In the second order approximation digram
structure is introduced. After a letter is chosen, the next
one is chosen in accordance with the frequencies with which

the various letters follow the first one. This requires a
table of digram frequencies pi(j). In the third order approxi-
mation trigram structure is introduced. Each letter is chosen
with probabilities which depend on the preceding two letters.

3. The Series of Approximations to English

To give a visual idea of how this series of processes
approaches a language, typical sequences in the approximations
to English have been constructed and are given below. In all
cases we have assumed a 27 svmbol M"alphabet"™, the 26 letters
and a space.

1. Zero order approximation (symbols independent and equi-
probable).
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD
QPAAMKBZAACIBZLHJQD
2. First order approximation {symbols independent but with

frequencies of English text).
OCRO HLI RGWR NMIELWIS EU 1L NBNESEBYA TH EEI ALHENHTTPA

OOBTTVA NAH BRL

3. Second order approximation {digram structure as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D
ILONASIVE TUCOOVWE AT TEASONARE FUSO TIZIN ANDY TOBE

SEACE CTISBE




4. Third order approximation (trigram structure as in English).
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME
OF DEMONSTURES OF THL RPTAGIN IS RLGOACTIONA OF CRE

5. 1lst Order Word Approximation. Rather than continue with
tetragram, ..., n-gram structure it is easier and better
to jump at this point to word units. Here words are chosen
independently but with their appropriate probabilities.
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN
DIFFERENT NATURAL HIRE YT THE A IN CAME THE TO OF TO
EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE
THESE.

6. 2nd Order Word Approximation. The word transition
probabilities are correct but no further structure is

included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER

THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER

METHOD FOR THE LETTERS THAT THE TIME OF “HO EVER TOLD

THE PROBLEM FOR AN UNEXPECTED

The resemblance tc ordinary English text increases

quite noticeably at each of the above steps. Note that these
samples have reasonably good structure out to about twice the
range that is taken into account in their construction. Thus
in (3) the statistical process insures reasonable text for two-

-’ letter sequence, but four-letter sequences from the sample can
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usually be fitted into good sentences. In (6]} seocuences of 4
or more words can easily be placed in sentences without unusual
or strained constructions. The particular sequence of twn words
"attack on an English writer that the character of this" is not
at all unreasonable. It appears then that a sufficiently complex
stochastic process will give a satisfactory representation of a
discrete source.

The first two samples were constructed by the use of
a book of random numbers in conjunction {for example 2) with a
table of letter frequencies. This method might have been continued
for (3), (4), and (5), since digram, trigram, and word frequency
tables are available, but a simpler eguivalent method was used.
To construct (3), for example, one opens a book at random and
selects a letter at random on the page. This letter is recorded.
The book is then opened t o ancther page and one reads until
this letter is encountered. The succeeding letter is then
recorded. Turning to another page this second letter is searched
for and the succeeding letter recorded, ctc. A similar process
was used for (4), (5), and (6). It would be interesting if
further approximations cculd be constructed, but the labor
involved becomes enormous at the next stage.

4, Graphical Representaztion of a llarkoff Process

Stochastic processes of the type described above are

known mathematically as discrete Markoff processes and have
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been extensively studied in the literature.* The general case
can be described as follows. There exist a finite number of
possible "states" of a systeu; Al, Aoy eeey Age In addition
there is a set of transition probabilities; pi(j) the proba-
bility that if the system is in state A; it will next go to
state Aj' To make this Markoff process into an information
source we need only assume that a letter is produced for each
transition from one state to another. The states will corre-
spond to the "residuée of influence" from preceding letters.

Tne situation can be represented graphically as shown
in Figs. 3, 4 and 5. The "states" are the junction points in
the graph and the prcbabilities and letters produced for a
transition are given beside the corresponding line. Fig. 3 is
for the example B in Section 2, while Fig. 4 corresponds to the
examplée C. In Fig. 3 there is onlv one state since successive
letters are independent. 1In Fig. 4 there are as many states
as 1etters.. If a trigram example were constructed there would
be at most n2 states corresponding to the possible pairs of
letters preceding the one being chosen. Fig. 5 is a graph for
the case of word structure in example D. Here S corresponds

to the "space' symbcl.

% For a detailed treatment see M, Frechet, "Metnods des fontions
arbitraires. Theorie des événements en chaine dans le cas
d'un nombre fini d'états possibles." Paris, Gauthier-Villars,

1938.




5. Ergodic and Mixed Sources

As we nave indicated above a discrete source for our
purposes can be considered to be represented by a Markoff process.
Among the possible discrete Markoff processes there is a group
with special proverties of significance in comaunication theory.
This special class consists of the "ergodic" processes and we
will call the corresponding sources ergodic sources. Although
a rigorous definition of an ergodic process is somewhat involved,.
the general idea is simple. In an ergodic process every sequence
produced by the process is the same in statistical properties.
Thus the letter frequencies, digram frequencies, etc., obtained
from particular sequences will, as the lengths of the sequences
increases, approach definite limits independent of the particular
sequence. A4ctually this is not true of every sequence but the
set for which it is false has probability zero. Roughly the
ergodic property means statistical homogeneity.

All the examples of artificial languages given above
are ergodic. This property is related to the structure of the
corresponding graph. If the graph has the following two properties
the corresponding process will be ergodic.

1. The graph does not consist two isolated parts A and
B such that it is impossible to go from junction points in
part A to junction points in part B along lines of the
graph ir. the direction of arrows and alsc impossible to

go from junctions in part B to junctions in part A.
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2, A closed series of lines in the graph with all arrows
on the lines pointing in the same orientation will be
called a "circuit". The ‘length" of a circuit is the
number of lines in it., Thus in Fig. 5 the series BEBES
is a circuit of length 4. The second property required
is that the greatest common divisor of the lengths of
all circuits in the graph be one.

If the first condition is satisfied but the second
one violated by having the greatest common divisor equal to
d > 1, the sequences have a certain type of periodic structure.
The various sequences fall into d different classes which are
statistically the same apart from a shift of the origin (i.e.
which letter in the sequence is called letter 1). By a shift
of from O up to d - 1 any sequence can be made statistically
equivalent to any other. A simple example with d = 2 is the
following. There are three possible letters a, b, c¢c. Letter

a is followed with either b or c with probabilities 1 and 2

respectively. Either b or c is always followed by 1gtter 2.

Thus a typical sequence is
abacacacabacababacac.

This type of situation is not of much importance for our work.
If the first condition is violated the graph may be

separated into a set of subgrashs each of which satisfies the

first condition. 7'Je will assume that the second condition is

also satisfied for each subgraph. '’e have in this case what may
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be called a "mixed' source made up of a number of pure components,
The components correspond to the various subgraphs. If Ly, L2,

L3"" are the component sources we may write

L= plLl + p2L2 * p3L3 * v

where p; is the a priori probability of the component source L.
Physically the situation represented is this. There
«ees Which are each of

are several different sources L L

10 bzr Ly
homogeneous statistical structure (i.e., they are ergodic). 'ie
do not know a priori which is to be used, but once the sequence
starts in a given pure component Li it continues indefinitely
recording to the statistical structure of that component.

AS an exanple one may take two of the processes defined
above and assume Py = .2 and Py = .8. A sequence from the mixed

source

+ .8 L

L = .2 Ll 5

would be obtained by choosing first Ll or L, with probabilities

2
.2 and .8 and after this choice generating a sequence from which-
ever was chosen.

Except when the contrary is stated we shall assume a
source to be ergodic., This assumption enables one to identify
averages along a sequence with averages over the ensemble of
possible sequences (the probability of a discrepancy being zero).
For example the relative frequency of the letter A4 in a particular
infinite sequence will be, with probability one, equal to its

relative frequency in the ensemble of sequences.
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If P, is the probability of state i and pi(Jj) the
transition probability to state j, then for the process to be

stationary it is clear the P must satisfy equilibrium conditions:
i

P =XP j
i3 ipi(a)

In the ergodic case it can be shown that with any starting condi-
tions the probabilities Pj(N) of being in state j after N symbols,

approach the equilibrium values as N—- o .




- 2l -

6. Choice Uncertainty and Entropy

We have represented a discrete information source
as a Markoff process. Can we define a quantity which will
measure, in some sense, how much information is "produced" by
such a process, or better, at what rate information is produced?
Suppose we have a set of possible events whose pro-
babilities of occurrence are Pys Pgy eeey Ppe These probabilities
are known but that is all we know conceining which event will
occur., Can we find a measure of how much "choice" is involved
in the selection of the event or of how uncertain we are of the
outcome?
If there is such a measure, say H(py, Py, «ss, P},
it is perhaps reasonable to require of it the following pro-
perties:
1. H should be continuous in the Pje
2. If all the p; are equal, p; = %, then H should be a
monotonic increasing function of n. With equally
likely events there is more choice, or uncertainty,

when there are more possible events.

3. If a choice be broken down into two successive choices,
the original H should be the weighted sum of the in-
dividual values of H. The meaning of this is illus-~
trated in Fig. 6. At the left we have three possi-

bilities i %, Py = %3 p3 =~% « On the right we
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first choose between two possibilities each with
probability %-, and if the second occurs make another
choice with probabilities %,‘%. The final results
have the same probabilities as before. We require,

in this special case, that

H('z. 3. 5)' H('i" '2')+'2'H (3‘, 2

The coefficient 2 is because this second choice only

occurs half the time.

In Appendix 2, the following result is established,
Theorem 2: The only H satisfying the three above assumptions
is of the form:

n
H=-K iil p; log py
where K is a positive constant,

This theorem, and the assumptions required for its
proof, are in no way necessary for the present theory. It is
given chiefly to lend a certain plausibility to some of our
later definitions. The real justification of these definitions,
however, will reside in their implications.

Quantities of the form H = =2 p; log p; {the constant

K merely amounts to a choice of a unit of measure) play a central

role in information theory as measures of information, choice
and uncertainty. The form of H will be recognized as that of
entropy as defined in certain formulations of statistical

mechanics where p; 1s the probability of a system being cell i of
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its phase space. H is then, for example, the H in Boltzmann's
famous H theorem. We shall call H = - p; log py the entropy of
the set of probabilities Py» eeey Ppe If x is a chance variable
we will write H(x) for its entropy; thus x is not an argument of
a function but a label for a number, to differentiate it from H(y)
say, the entropy of the chance variable y.

The entropy in the case of two possibilities with

probabilities p and qQ = l-p, namely

H=~(plog p+ q log q)
is plotted in Fig. 7 as a function of p.

The quantity H has a number of interesting properties
which further substantiate it as a reasonable measure of choice
or information.

l. H =0 if and only if all the'pi but one are zero,
this one having the value unity. Thus only when we are certain
of the outcome does H vanish. Otherwise H is positive.

2., For a given n, H is a maximum and equal to log n when
all the p; are equal (i.e., %). This is also intuitively the
most uncertain situation,

3. Suppose there are two events x and y in question with
m possibilities for the first and n for the second. Let p(i,J)
be the probability of the joint occurrence of i for the first

and j for the second. The entropy of the joint event is

H(x,y) = 2 p(i,3) log p(i,])
i,J
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while
H(x) = Z p(i,j) log Z p(4i,])
i,] i

9

H(y) = 12 p(i,j) log ? p(i,J)

?

It is easily shown that
H(x,y) < H(x) + Hly)

with equality only if the events are independent (i.e., p(i,j) =
p(i) p(j)). The uncertainty of a joint event is less than or
equal to the sum of the individual uncertainties.

L. Any change toward equalization of the probabilities
P1s Py, es., P, increases H. Thus if P <Py and we increase Py,
decreasing P, an equal amount so that Py and p, are more nearly
equal, then H increases. More generally, if we perform any

"averaging" operation on the Py of the form

-

!' =2 a.. ps
Pi 3 815 Pj
where ? a5 = %aij = 1, and all a;; 20, then H increases (ex-

cept in the special case where this transformation amounts to no
more than a permutation of the P with H of course remaining
the same).

5. Suppose there are two chance events x and y as in 3,
not necessarily independent. For any particular value i that
X can assume there is a conditional probability pi(j) that y
has the value j. This is given by
pli,J)
Z p(i,jJ)
J

pi(j) =
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We define the conditional entropy of vy, Hx(y) as the average
of the entropy of y for each value of x, weighted according to
the probability of getting that particular x. That is,

Ho(y) = -2 p(i,]) log p,(J)
i,
This quantity measures how uncertain we are of y on the average

when we know x. Substituting the value of pi(j) we obtain

H (y) = =Z p(i,5) log p(i,j) + 2 p(ij) log Z p(4,])
i, i, J

= H(x,y) = H(x)
or

H(x,y) = H(x) + H,(y)

The uncertainty of the joint event x,y is the uncertainty of x
plus the uncertainty of y knowing x.
6., from 3 and 5 we have
H(x) + H(y) 2 H(x,y) = H(x) + Hx(‘y)
Hence

H(y) 2 Hy(y)

The uncertainty of y is never increased by knowledge of x. It
will be decreased unless x and y are independent events, in which
case it is not changed.

7. The Entropy of an Information Source

Consider a discrete source of the finite state type

considered abocve. For each possible state i there will be a

set of probabilities pi(j) of producing the various possible

symbols j. Thus there is an entropy Hi for each state. The
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entropy of the source will be defined as the average of these
Hi weighted in accordance with the probability of occurrence of
the states in question:
H=2P, H
g 174
- ;% F; py(J) log py(J)
J
This is the entropy of the source per symbol of text. If the
Markoff process is proceeding at a definite time rate there is
also an entropy per seccnd
H' = i fi H
where f. is the average frequency (occurrences per second) of

i

state i, Clearly
Ht' = mH

where m is the average number of symbols produced per second.

H or H' measure the amount of information generated per symbol

or per second by the source. If the logarithmic base is two they
will represent bits per symbol or per second.

If successive symbols are independent then H is simply
=z Py log P where p; is the probability of symbol i. Suppose in
this case we consider a long message of N symbols. It will con-
tain with high probability about plN occurrences of the first
symbol, p,N occurrences of the second etc. Hence the probability
of this particular hessage will be roughly

pN pN p N
P=P; Py  ee. P
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or

log p = N 12 Py log p;

log p 2 -NH

N
H is thus approximately the logarithm of the reciprocal proba-
bility of a typical long sequence divided by the number of symbols
in the sequence. The same result holds for any source. Stated

more precisely we have (see appendix 3):

Theorem 3: Given any € > 0 and & > O, we can find an No such

that the sequences cf any length N Z_No fall into two classes.

l, A set whose total probability is less than e.

2. The remaining set all of whose members have probabilities
satisfying the inequality

1

loN P .y

<bd

-1
In other words we are almost certain to have 19552- very close

to H when N is large.

A closely related result deals with the number of
sequences of various probabilities, Ccnsider again the sequences
of length N and let them be arranged in order of decreasing pro-
bability. We define n{q) to be tihe number we must take from this
set starting with the most probable one in order to accumulate

a total probability q for those taken.
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Theorem 43

Lim 128 0(a) o y
Moo |
when q does not equal O or 1.

We may interpret log n(q) as the number of bits
required to specify the sequence when we only consider the most
probable sequences with a total probability q. Then log n(q)/N
is the number of bits per symbol for the specification. The
theorem says that for large N this will be independent of q and
equal to H. The rate of growth of the logarithm of the number
of reasonably probable sequences is given by H, whether "reason-
ably probable" means excluding the .1% which are least probable
or the 99.9%. Due tc these results, which are proved in
appendix 3, it is possible for most purposes to treat the long

HN

sequences as though there were just 2 of them, each with a

probability 2-HN,

The next two theorems show that H can be determined
by limiting operations directly from the statistics of the
message sequences, without reference to the states and transi-

tion probabilities between states.

Theorem 5s Let p(Bi) be the probébility of a sequence Bi of

symbols from the source. Let

= -12p(s

where the sum is over all sequences Bi containing N symbols.

Then GN is a mcnotonic decreasing function of N and
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Lim GN = H,
N-0o
Theorem 6: Let p(Bi,Sj) be the probability of sequence Bi
followed by symbol S. and pp (S;) = p(B,,5,)/p(B;) be the con=
J Bi J i i
ditional probability of Sj after Bi' Let
Fy = =&
Y

where the sum is over all blocks Bi of N-1 symbols and over all

p(BiSj) log pBi(SJ)

symbols Sj. Then Fy is a monotonic decreasing function of N,

and Lim Fh = H,.
N-+»c0

These results are derived in appendix 3. They show
that a series cof approximations to H can be obtained by consider-
ing only the statistical structure of the sequences extending
over 1, 2, ... N symbols. EN is the better approximation, In
fact Fh is the entropy of the Nﬁ-l order approximation to the
source of the type discussed above. I1f there are no statistical
influences extending over more than N symbols, that is if the
conditional probability of the next symbol knowing the preceed-
ing (N-1) is not changed by a knowledge of any before that, then
FN = H, Fﬁ of course is the conditional entropy of the next
symbol knowing the (N-1) preceeding ones, while GN is the entropy

per symbol of blocks of N symbols.
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The ratio of the entropy of a source to the maximum
vailue it could have while still restricted to the same symbols

will be called its relative entropy. This is the maximum com-

pression possible when we encode into the same alphabet. One

minus the relative entropy is the redundancy. The redundancy

of ordinary English, not considering statistical structure over
greater distances than about eight letters is roughly 50%.

This means that when we write English half of what we write is
determined by the structure of the language and half is chosen
freely. The figure 50% was found by several independent
methods which all gave results in this neighborhood. One is

by calculation of the entropy of the approximations to English.
A second method is to delete a certain fraction of the letters
from a sample of English text and let someone attempt to re-
store them. If they can be restored when 50% are deleted the

redundancy must be greater than 50%. A third method depends

on certain known results in cryptography.

Two extremes of redundancy in English prose are
represented by Basic English and by James Joyces' book "Finigans
Wake." The Basic English vocabulary is limited to 850 words and
the redundancy is very high. This is reflected in the expansion
that occurs when a passage is translated into Basic English.

Joyce on the other hand enlarges the vocabulary and is alleged

to achieve a compression of semantic content.
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8. Representation of the Encoding and Decoding Operations

We have yet to represent mathematically the cperations
performed by the transmitter and receiver in encoding and de-
coding the information., Either of these will be called a dis-
crete transducer. The input to the transducer is a sequence of
input symbols and its output a sequence of output symbbls.

The transducer may have an internal memory so that its output
depends not cnly on the present input symbol but also on the
past history. We assume that the internal memory is finite,
i.e., there exists a finite number m of possible states of the
transducer and that its output is then a function of the present
state and the present input symbol. The next state will be a
second function of these two quantities, Thus a transducer

can be described by two functions

Yn £(x, ap)

ope1 = By o)

where X, is the n:g--tl input symbol
a_is the state of the transducer when the nEQ input symbol

n
is introduced
Yn is the output symbol {or sequence of output symbols)
produced when x 1is introduced if the state is a,.
If the output symbols of one transducer can be identi-
fied with the input symbols of a second, they can be connected in

tandem and the result is alsc a transducer. If there exists a




second transducer which operates on the output of the first and
recovers the original input, the first transducer will be called

non-singular and the second will be called its inverse.

Theorem 7+ The output of a finite state transducer driven by a
finite state statistical source is a finite state statistical
source, with entropy (per unit time) less than or equal to that
of the input. If the transducer is non-singular, equality
obtains.,

Let a represent the state of the source, which pro-
duces a sequence of symbcls X5 and let the state of the trans-
ducer be B, which produces in its ocutput blocks of symbols yj.
The combined system can be represented by the "product state
space" cf pairs (g,f}. Two points in the space, (a;,B4) and
(aZ,Bz) are connected by a line if a; can produce an x which
Ehanges Bl to B,, and this line is given the probability of that
x in this case. The line is labelled with the block of Yj
symbols produced by the transducer. The entropy of the output
can be calculated as the weighted sum over the states, If we
sum first on B each resulting term is less than or equal to the
corresponding term for a, hence the entropy is not increased.,

If the transducer is non-singular let its output be connected to
the inverse transducer. If Hi, Hé and Hs are the output entropies
of the source, the first and second transducers respectively

then H! > H!' > H' = H' and therefore H' = H'.
l=-"2-=-"3 1 1 2
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Suppose we have a system of constraints on possible
sequences of the type which can be represented by a linear

*

graph as in fig. 2, If probabilities p§§) were assigned to
the various lines connecting state i to state j this would
become a source. There is one particular assignmnent which
maximizes the resuiting entropy given by the following result
(Appendix 4).

Theorem 8: Let the system of constraints considered as a chan-

nel have a capacity C. If we assign

(s)
p(s) Ei c tij
ij B,
i
where £§§) is the duration of the sth symbol leading from state

i to state j and the Bi satisfy

- (8)
By = Z B.C 1J

then H is maximized and equal to C.
By proper assignment of the transition probabilities
the entropy of symbols on a channel can be maximized at the

channel capacity.

9. The Fundamental Theorem for a Noiseless Channel

We will now justify our interpretation of H as the
rate of generating information by proving that H determines the

channel capacity required with most efficient coding.
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Theorem 9: Let a source have entropy H (bits per symbol) and
a channel have a capacity C (bits per second). Then it is
possible to encode the output of the source in such a way as
to transmit at the average rate g - € symbols per second over
the channel where € is arbitrarily small. It is not possible
to transmit at an average rate greater than g.

The converse part of the theorem, that &-cannot be
exceeded may be proved by noting that the entropy of the channel
input per second is equal to that of the source, since the
transmitter must be non-singular, and also this entropy cannot
exceed the channel capacity. Hence H' < C and the number of
symbols per second = H'/H < C/H.

The first part of the theorem will be proved in two
different ways. The first method is to consider the set of all
sequences of N symbols produced by the source. For N large
we can divide these into two groups, the first containing less
than Z(H‘”‘)N members and the second containing less than 2RN
members and having a total probability less than p. As N in-
creases 1 and y approach zero. The number of signals of dura-

2(C-G)T

tion T in the channel is greater than with 8 small

when T is large. If we choose

T=(%+}.)N
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then there will be a sufficient number of sequences of channel
symbols for the high probability group when N and T are suf-
ficiently large (however small \) and also some additional ones.,
The high probability group is coded in an arbitrary one to one
way into this set, The remaining sequences are represented by
larger sequences, starting and ending with one of sequences not
used for the high probability group. This special sequence a cts
as a start and stop signal for a different code. In between a
sufficient time is allowed to give enough different sequences

for all the low probability messages. This will require
R
Tl = (E"’ ¢)N

where ¢ is small., The mean rate of transmission in message

symbols per second will then be greater than

T -1
T 1
[‘1-5’ vt 33']

-1
[(1-5) Banyen B rp)]

!}

C

As N increases 5, N and ¢ apprcach zero and the rate approaches
C

g-
Another method of performing this coding and proving
the theorem can be described as follows: Arrange the messages

of length N in order of decreasing probability and suppose their
s-1
probabilities are py 2 py 2 Py ese 2 pe Let P_ = Z p; s that is
: 1

Py is the cumulative probability up to, but not including, p_.




~/
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We first encode into a birary system., The binary code for
message s is obtained by expanding P, as a binary number. The

expansion is carried out to mg places, where mg is the integer

satisfying:
2 1
1082 Ps < ms <1+ lng -p-;

Thus the messages of high probability are represented by short
codes and those of low probability by long codes. From these

inequalities we have

1
2Ms S omg=l

The code for Ps will differ from all succeeding ones in one or

more of its mg places, since all the remaining Pi are at least ;%_
s
larger and their binary expansions therefore differ in the

first m places. Consequently all the codes are different and
Tit is ‘possible to recover the message from its code, If the
channel sequences are not already sequences of binary digits,
they can be ascribed birnary numbers in an arbitrary fashion and
the binary code thus translated into signals suitable for the
channel,
The average number [I' of binary digits used per symbol

of original message is easily estimated. Ve have

But,
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and therefore,

-Zps log P, < H* <§- Z Pg log Pg

As N increases -Zpglog pg approaches H, the entropy of the source
and H' approaches H,
We see from this that the inefficiency in coding when
only a finite delay of N symbols is used, need not exceed
% plus the difference between the true entropy H, the
entropy HN calculated for sequences of length N, The per cent

excess time needed over the ideal is therefore less than

G
N1
5 T aEy -t

This method of encoding is substantially the same as
one found independently by . Il. Fano. His method is to arrange
the messages of length N in order of decreasing probability.
Divide this series into two groups of as nearly equal probability
as possible, If the message is in the first group its first
binary digit will be O, otherwise 1, The groups are similarly
divided into subsets of nearly equal probability and the par-
ticular subset determines the second binary digit. This process
is continued until each subset contains only one message. It
is easily seen that apart from minor differences (generally in
the last digit) this amounts to the same thinz as the arithmetic

process described above,
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10, Discussion

In order to obtain the maximum power transfer from a
generator to a load a transformer must in general be introduced
so that the generator as seen from the load has the load
resistance, The situation here is roughly analogous. The trans-
ducer which does the encoding should match the source to the
channel in a statistical sense., The source as seen from the
channel through the transducer should have the same statistical
structure as the source which maximizes entropy in the channel.
The content of Theorem 9 is that although an exact match is
not in general possible, we can approximate it as closely as
desired. The ratio of the actual rate of transmission to the
capacity C may be called the efficiency of the coding system.
This is of course equal to the ratio of the actual entropy of the
channel symbols to their maximum possible entropye.

In general ideal or nearly ideal encoding requires
a long delay in the transmitter and receiver. In the noiseless
case which we have been considering, the main function of this
delay is to allow reasonably gocd matching of probabilities to
corresponding lengths of sequences, ith a good code the
logarithm of the reciprocal probability of a long message must
be proportional to the durection of the corresponding signal,

in fact

log p _01

4




must be small for all but a small fraction of the long messages.,
If a source can produce only one particular message
its entropy is zero, and no channel is required., For example,
a computing machine set up to calculate the successive digits
of n produces a definite sequence with no chance element. No
channel is required to "transmit™ this to another point. One
could construct a second machine at this point to compute the
same sequence. However, this may be impractical. In such a
case we can choose to ignore some or all of the statistical
knowledge we have of the source., lie might consider the digits

of m to be a random sequence in that we construct a system

capable of sending any sequence of digits. In a similar way

we may choose to use some of our statistical knowledge of
English in constructing a code, but not all of it. In such

a case we consider the source with the maximum entropy sub-
ject to the statistical conditions we wish to retain. The
entropy of this source determines the channel capacity which
is necessary and sufficient. In the n example the only in-
formation retained is that all the digits are chosen from the
set 0, 1, ..., 9. 1In the case of English one might wish to
use the statistical savings possible due to letter freguencies,
but nothing else. The maxiium entropy source is then the lst
approximation to English and its entropy determines the re-

quired channel capacity.
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11. Examples

AS a simple example of some of these results consider

a source which produces a sequence of letters chosen from among
1

A, B, C, D, with probabilities 3 %, %, %, successive symbols being

chosen independently. ‘Je have

= (% 1,1
H -(2 log 5 + I log

e

3}

~

= % bits per symbol.

Thus we can approximate & coding system to encode messages from
this source into binary digits with on the sverage 7/4 binary
digit per symbol. In this case we can uactually achieve the
limiting value by the followinc cocde (obtained by the method of

the second proof of Theorem 8):

A 0
B 10
C 110
D 111

The average number of binasry digits used in encoding a secuence

of N symbols will be

ﬁ(%xls» x2+:82.x3)=

e
o AN

It is easily seen that the binary digits 0,1 have probabilities

l, 1 so the K for the coded sequences is 1 bit per symbol,
2 2
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Since on the average we have % binary symbols per original
letter the entropies on a time basis are the same. The maximum

possible entropy for the original set is log 4 = 2, occurring
11 11
. L L L LT
tive entropy is ;. ‘e can transiate the binary seguences into

when A, B, C, D have probabilities lence the rela-

the original set of symbols on a two to one basis by the follow=-

ing table:

00 Al
01 il
10 ct
11 Dt

This double process then encodes the original message into the

same symbols but with an average compression ratio z .

8

AS a second examplie consider 2 source which produces
a sequence of A's and B's with probability p for 4 and g for B.

If p< < o we have

H=- log pp (l-p)l-

]

- p log o (1-p)

r;‘ el
igo]

A plogg

p
In such a case one can coustruct 2 fairly pood coding of the
message on a 0,1 chaniel by sending a special sequence, say 0000,
for the infrequent symbol 4 znd then a sequence indicating the
number of B's following it. This could be indicated by the
binary representation with zll numbers containing the special

sequence deleted. All numbers upr to 16 are represeanted as usual,
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16 is represented by the next binary numter after 15 .thich does

not contain four zeros, namely 17 = 10001, etc.

It can be shown that as p — O the coding approaches
ideal providing the length of the special sequence is properly

adjusted,
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PART II  The Discrete Channel 'Jith Noise

11, Representation of a Noisy Discrete Channel

Ve now consider the case where the signal is perturbed
by noise during transmission or at one or the other of the
terminals. This means that the received signal is not necessarily
the same as that sent out by the transmitter. Two cases may be
distinguished. If a particular transmitted signal always produces
the same received signal; i.e., the received signal is a definite
function of the transmitted signal, then the effect may be called
distortion. If this function has an inverse, no two transmitted
signals producing the same received signal, distortion may be
corrected, at least in principle, by merely performing the inverse
functional operation on the received signal.

The case of interest here is that in which the signal
does not always undergo the same change in transmission. 1In
this case we may assume the received signal E to be a function
of the transmitted signal S and a second variable, the noise k.

E = £(S,N)
The noise is considered to be a chance variable just as the
message was above., In general'if mzy be represented by a
suitable stochastic process. The most general type of noisy
discrete channel we shall consider is a generalization of the

finite state noise f{ree channel described previously. Ue
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assume a finite number of states and a set of probabilities

Po,i (B,3) .
This is the probability if the channel is in state a and symbol
i is transmitted that symbol j will be received and the channel
left in state B. Thus a and 8 range over the possible states,
i over the possible transmitted symbols and j over the possible
received symbols In the case where successive symbols are inde-
pendently perturbed by the noise there is only one state, and the
channel is described by the set of transition procbabilities pi(j),
the probability of transmitted symbol 1 being received as j.

If a noisy channel is fed by a source there are two
statistical processes as work; the source and the noise. Thus
there are a number of =»ntropies that can be calculated.

First there is the entropy H{x) of the source or of the input
to the channel (these will be equal if the transmitter is non-
singular). The entropy of the output of the channel, i.e., the
received signal will be denoted by H(y). In the noiseless case
H(y) = H(x). The joint entropy of input and output will be
H(x,y). Finally there are two conditional entropies Hx(y) and
Hy(x), the entropv of the output when the input is known and

conversely. Among these cuantities we have the relations
Hix, y) = H(x) + H_(y) = H(y) + Hy(X).

All of these entronies cen be measured on & per second or a

per symbol bzasis,



12, Egquivocation and Channel Capacity

If the channel is noisy it is not in general possible
to reconstruct the original message or the transmitted signal with
certainty by any operation on the received signal T. There are,
however, ways of transmitting the information which are optimal
in combating noise. This is the problem which we now consider.
Suppose there are two possible symbols O and 1, and
we are transmitting at a rate of 1000 symbols per second with

probabilities Po = P1 = 1 . Thus our source is producing infor-

2
mation at the rate of 1000 Lits per second. During transmission
the noise introduces errors, so that on the average 1 in 100
is received incorrectly (a 0 as 1, or 1 as 0). What is the rate
of transmission of information? Certainly less than 1000 bits
per second since about li; of the received symbols are incorrect.
Our first impulse might be to say the rate is 990 bits per
second, merely subtracting the expected number of errors.
This is not satisfactory since it fails to take into account
the recipient's lack of knowledge of where the errors occur.
We may carry it to an extreme case and suppose the noise so
great that the received symbols are entirely independent of the
transmitted symbols. The probability of receiving 1 is 1/2
whatever was transmitted and similarly for 0. Then about half
of the receivecd symtols are correct due to chance alone and

we would be giving the systen credit for transmitting 500 bits

per second while actually no information is being transmitted
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at all. Equally "good™ transmission would be obtained by
dispensing with the channel entirely and flipping a coin at
the receiving point.

Evidentliy the proper correction to apply to the amount
of information transmitted is the amount of this information
which is missing in the received signal, or alternatively the
uncertainty when we have received a signal of what was actually
sent. From our previous discussion of entropy as a measure of
uncertainty it seems reasonable to use the conditional entropy
of the message knowing the received signal as a measure of
this missing information. .This is indeed the proper definition
as we will see later. Following this idea the rate of actual
transmission, R, would be obtained by subtracting from the rate
of production (i.e,, the entropy of the source) the average rate
of conditional entropy.

R = H(x) - Hy(x) .

The conditional entropy Hy(x) will for convenience

be called the equivocation. It measures the average ambiguity

of the received signal.

In the example considered zbove if a 0 is received
the a posteriori probability that a O was transmitted is .99,
and that a 1 was transmitted is .01, These figures are reversed

if a 1 is received. Hence



Hy(x) = - [.99 log .99 + 0.01 log 0.01]
= ,08) bits/symbol
or 81 bits per second, The system is therefore transmitting
at a rate 1000 - 81 = 919 bits per second. In the extreme case
where a O is equally likely to be received as a O or 1 and

similarly for 1, the a posteriori probabilities are %, % and

1 1 1 1
H = - 21log=+=log =
Y(x) L 2 6 2 2 e 2 ]

= 1 bit per symbol
or 1000 bits ver second. The rate of transmission is then
0 as it should te,

The following theorem gives a direct intuitive
interpretation of the equivocation and also serves to justify
it as the unique appropriate measure. 'Je consider a communi-
cation system and an observer (or auxiliary device) who can
see both what is sent and <hat is recovered {with errors due
to noise). This observer notes the errors in the recovered
message and transmits data to the receiving point over a
teorrection channel” to enable the receiver to correct the
errors. The situation is indicated schematically in Fig. 8
Theorem 10: If the correction channel has a capacity equal to

Hy(x) it is possible to so encode the correction
data as to send it over this channel and correct
211l but an arbitrarily small fraction € of the
errors. This is not possible if the channel

capacity is less than Hy(x).



Roughly then Hy(x) is the amount of additional infor-

mation that must be sunplied per second at the receiving point
to correct the received message.
To prove the first part, consider long sequences of
received message M' and corresponding original message M.
There will be logarithmically THy(x) of the M's which could
reasonably have produced each M'. Thus we have THy(x) binary
digits to send each T seconds. This can be done with e frequency
of errors on a channel oif capacity Hy(x).
The second part can be proved by noting first that
for any discrete chance variables x, y, 2
By (x,2) Z_Hy(x)
The left-hand side can be expanded to give
H(z) + H z(x) > Hy(x)

y

H (x)>H (x) - K(y).
yz y

If we identify x as the output of the source, y as the received
signal and z as the signal sent over the correction channel,
then the right-hand side is the equivocation less the rate of
transmission over the correction channel. If the capacity of
this channel is less than the equivocation the right-hand side
will be greater than zerc and Hyz{x) > 0. But this is the
uncertainty of what wes sent knowing both the received signal
and the correction signal., If tais is rreater than zero the

frequency of errors cannot be arbitrarily small.
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Examples
Suppose the errors occur at random in a sequence cf binary
digitss probability p that a digit is wrong anc q =1 - p
that it is right. These errors can be corrected if their
position is known. Thus the correction channel need only
send information as to these positions., This amounts to
transmitting from a source which produces binary digits
with probability p for 1 (correct) and g for O (incorrect).
This rejguires a channel of capacity
- [plogp + q log q]
which is the equivocation of the original system.
The rate of transmission R can be written in two
other forms due- to the identities noted above. We have

R

H(x) - Hy(x)

1}
jo o]
«

'
0
&

H{x) + H(y) - Hlx,y).

The first defining expression has already been interpreted
as the amount of information sent less the uncertainty of
what was sent. The second measurecs the amount received less
the part of this which is due to noise. The third is the
surn of the two amounts less the joint entropy and therefore
in a sense is the number of bits per second common to the
two. Thus all three expressions have a certain intuitive

significance,
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The capacity C of a noisy channel should be the
maximum possible rate of transmission, i.e., the rate when
the source is properly natched to t he channel. ‘/e therefore
Zefine tihe channel capacity by

C = Max (H(x) - Hy(x))
where the muximum is with respect to all possible information
sources used as input to the chanrel. If the channel 1is
noiseless Hy(x) = 0. The definition is then equivalent to
that zlready given for a noiseless channel since the maximum
entropy for the channel is its capacity.

13. The Fundamental Theoren for a Jiscrete Channel
“Jith Hcise

It may seem surprising thet we should define a
Aefinite capacity C for a2 noisy channel since e can never
send certain information in such a case. It is clear, however,
that by sendinc the information in a redundant form the proba-
bility of errors can be recuced. For exarple by repeating the
message many times and by a statistical study of the different
received versions of the messare the probability of errors could
be made very small. One would expect, however, that to make this
probability of errors approach zero, the redundancy of the
encoding must increase indefinitely, and the rate of trans-
mission therefore approach zero. This is by nc means true.
If it were, there would not be a very well defined capacity,
but only a capacity for a given frequency of errors, or a

given e:uivocationi the capacity going Jown as *the error

-e
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requirements are made more stringent. hctually the capacity C
defined above has a very definite significance. It is posgible
to send information at the rate C through the channel with as

small a frequency of errors or equivocation as desired by

proper encoding. This statement is not true for any rate
greater than C. 1If an attenpt is made to transmit at a higher
rate than C, say C + Ry, then tnere +ill necessarily be an
equivocation equal to or greater than the excess Ry. Nature
takes .payment by requirinz just that much uncertainty, so that we
are not actually =set-in~ any more than C through correctly.
The situation is indicated in Fig. 9. The rate of
information into the channel is plotted horizontally and the
equivocation vertically. Any pcint above the heavy line in
the shaded region can be attained and those below cannot.
The points on the iine cannot in generzl be attained, but there
will usually be two points on the line that can.
These results are the main justification for the
definition of C and will now be proved.,
Theorem 11. Let 2 discrete channel have the capacity C and a
discrete source the entropv per second H. If H< C there
exists a coding svsten sucn that the output of the source can
be transmitted over tne channel with an arbitrarily small fre-
quency of errors {or an arbitrarily small equivocation). If
H> C it is possible to encode the source so that the equivo-

cation is less than H - C + = wnere € 1s zarbitrarily small.
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There is no method of encoding which gives an equivocation
less than H - C.

The method of proving the first part of this theorem
is not by exhibiting a coding method having the cdesired proper-
ties, but by showing that such a code must exist in a certain
group of codes. In fact we will average the frequency of
errors over this group and show that this average can be made
less than €. If the average of a set of numbers is less than
€ there must exist at least one in the set which is less than
€. This will estaolish the desired result,

The capacity C of a noisy channel has been defired

as

(@]
!

= Max (H(x) - Hy(x))

where x is the input and y the output. The maximization is

over all sources whic: might be used 2s input to the channel,
Let So be a2 source which achieves the maximum

capacity C. If this maximum is not actually achieved by any

source let SO be a source which approximates t o giving the

maximum rate. Suppose S5, is used as input to the channel,

“!le consider the possible transmitted and received sequences

of a long duration T. e wili haves

l. The transmitte:d sequences {all into two classes, a high

probability sroup with about 2T R(x) nembers and the remaining

sequences of small total probzability.
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2, Similarly the received sequences have a high probability
set of about 2T E(¥) merbers and 2 low probability set of re-
maining sequences,
3. Zach high probability output could be produced by about
2T Hy(X) inputs. The rrobability of sll other causes has a
small total, -

All the €'s und ®'s implied by the words ‘'small" and
'zabout" in these statements approach zero as we allow T to in-
crease and SO to approach the maximizing source.

The situaticn is swmnnarized in Fig. 10 where the
input blocks are points on the left and output blocks points
on the right. The fan of cross lines represents the range of
possible causes for a typical output.

dow suppose we have another source producing informa-
tion at rate R with R < C. In the period T this source will
have 2T R high probability outputs. “/e wish to associate these
with a selection of tae possible channel inputs in such a way
as to get a small frequency of errors. We will set up this
association in all possible ways (using, however, only the
high probability group of inputs &s determined by the source

S,) and average the freouency of errors for this large class of

o)
possible coding systems. This is the same nas calculating the

frequency of errors for 2 random &ssociztion of the messages

anc channel inputs of duration T. Supvoose a particular output yl
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is observed. ''hat is the probability of more than one message
in the set of possitle ceuses of yl? There are ZT R messafes

2T H{x) points. The probability of a

distributed at randorn in
particular point being z message is thus

T(R-H(x))
2

The probability that none of the points in the fan is a message
(apart from the actuzl originating message) is

TH (x
23")

Now R < R(x) - Hy(x) so R-H{x) = -Hy(x) - 5 with 5 positive,

Consequently

approaches (es T — )
T
1-2
Hence the probability of an error approaches zero and the
first part of the theorem is proved.
The second pasrt of the theorem is easily shown by
noting that we coulcd nerely send C bits per second from the

source completely neglecting the remainder of the informetion

generated. it the receiver tne neglected part zives an



R SR

equivocation H(x)-C and the part transmitted need only add e.
~~ This limit can also be attained in many other wavs as will be
shown when we consider the continuous case.

The last statement of the theorem is a simple con-
sequence of our definition of C. Suppose we can encode a source
with R = C + a in such a way as to obtain an equivocation less
than 2. Then Hy(x) <azand R = H{x) =C + a

H(x) - Hy(x) > C
This contradicts the definition of C as the maximum of H(x) -
Hy(x).

Actually more has been proved than was stated in the
theorem. 1If the average of a set of positive numbers is within
e of zero, a fraction of at most v can be greater than +t.
Since € is arbitrarily small we can say that zlmost all the

systems are arbitrarily close to the idezl.

14. Discussion

The demonstration of theoren 11, while not a pure

existence proof, nas some of the deficiencies of such proofs.

An attempt to obtain a good zpproximation to ideal coding by
following the method of the proof is zenerally impractical,
In fact apart from some rsther trivial cases and certain
limiting situations no explicit description of a series of
approximation to the ideal has been found. Probably this is
no accident but is related to the difficulty of giving an
explicit construction for a ~ood approximetion toc a2 random

sequence,




An approximation to the ideal would have the property
that if the signal is cltered in a reascnable way by the noise,
the original can still be recovered. 1In other iorus the altera-
tion will not in general bring it closer to another reasonable
signal than the original, TtThis is accomplished at the cost of
a certain anmount of redundancy in the coding. The redundancy
must be introduced in the proper wey to combat the particular
noise structure involved. However, any redundancy in the source
will usually help if it is utilized at the receiving noint.

In particular, if the source already has a certain redundancy
and no attempt is made to eliminate it in matching to the
channel, this redundancy will help combat noise. For -xample,
in a noiseless teletype channel one could save about 50% in
time by proper encoding of the messages. This is not done and
the redundancy of English remains in the channel symbols.,.

This has the advantage, however, of allowing considerable noise
in the channel, A4 sizable fraction of the letters can be re-
ceived incorrectly and still reconstructed by the context. In
fact this is probably not a bac avproximatiocn to the ideal in
many cases, since the statistical structure of Enzlish is rather
involved and the reasonable cnglish sequences not too far (in
the sense required for the theorem) from a rziidom selection.

As in the noiseless case 2 delzsy is generally re-
quired to aporoach the idesal encoding. It now has the addi-

tionzl function of zllowing a large sample of noise to affect
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the signal before any judgment is made at the receiving point
as to the original messcge. Increasing the sample size always
sharpens the possible statistical assertions,

15. Example of a Discrete Channel and Its Capacity

A simple example of a discrete cnannel is indicated
in Fig. 11. There are three possible syubols. The first is
never affected by noise. Tie second and third each have prob-
ability p of coming through undisturbed, and q of beinnt changed
into the other of the pair., "'e have (letting a = =[p log p + q
log ql, P te the proLability of the first symbol and Q that of
the second and third),

H(x) = =P log P = 2Q log Q
Hy(x) = 2Qa
Ve wish to choose P and Q in such a way as to maximize H(x) =

Hy(x), subject to the constraint P + 2Q = 1. Hence we consider

U=-P log P -29 1log Q@ - 20a + (P + 2Q)

oU

3 - -1 -1og P +2% =0

oU

— =22 -21log 3 -20a+ 2.=0
2Q E ¥

Eliminating \
log P = log Q +a

Qe® = QP
R 1

P...._L_

= f = o=
B+2 ¢ T 242

]

The channel capacity is then
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Note how this checks the obvious values in the cases
p=1andp= .21. In the first 8 = 1 and C = log 3 which is
correct since the channel is then noiseless with 3 possible

symbols. If p = % B =2 and € = log 2. Here the second and
third symbols cangbt be distinguished at 21l and act together
like one symbol. The first symbol is used with probability

p = % and the second and third together with probability % .
This may be distributed in any desired way and still achieve
the maximum capacity.

For intermediste values of p the channel capacity
will lie between log 2 and log 3. The distinction between the
second and third symbols conveys some information but not as
rnuch as in the noiseless case. The first symbol is used some-
what more frequently than the other two because of its frcedom
from noise.

16, The Channel Cepacitv in Certain Special Cases

If the noise affects successive channel symbols inde=-
*pendently it can be described by a set of transition probabili-
ties Pij- This is the probability if symbol i is sent that J
Wwill be received. The channel capacity C is then given by
the maximum cof

f' Pip log § Pp . - .Z. Pipij log P,

155 [iPig P15 7 57 J
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where we vary the Pi subject to ZPi = 1, This leads by the

method of Lagrange to the equations,

z Psj _ -
j PSJ log z—-—'—— }1 S 1, 2, one
i PiPij

Multiplying by Ps and summing on s shows that p = «C, Let the
inverse of . (if it exist b = .

psg ( exists) be hsj so that § hstpsj stg o
Then:

s§ hstpsj log Pgj = log ? PiP;y = -C é hee

Hence:

Pipit = exp [C E hst + sithtpSJ log p.

He M

or,

Py = g hit exp [C g hoe + Z h_ P log psj]

s,j st7sd

This is the system of equations for determining the
maximizing values of Pi’ with C to be determined so that
Z P; = 1. Uhen this is done C will be the channel capacity,
and the Pi the proper probabilities for the channel symbols
to achieve this capacity.

If each input symbol has the same set of probabili-
ties on the lines emerging from it, and the same is true of

each output symbol, the capacity can be easily calculated,
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Examples are shown in Fig, 12, 1In such a case H,(y) is inde-
pendent of the distribution of probabilities on the input -
symbols, and is given by = I P; log p; where the p; are the
values of the transition probabilities from any input symbol,

The channel capacity is
Max [H{y) - H (y)]
= Max H(y) + 2 P; log Pje

The maximum of H(y) is clearly log m where m is the number of
output symbols since it is possible to make them all equally
probable by making the input symbols equally probable, The

channel capacity is therefcre
C=1logm+ 2 Py log Py

In Fig, 12a it would be

C

iog 4L - log 2 = log 2
This could be achieved by using only the 1lst and 3rd symbols.,
In Fig. 12b

@
"

2 1
log L « = 10og 3 =« = 10 6
£ 3 124 3 E

= log 4 - log 3 = % log 2

1,3
log = 2
3
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In Fig. 12c¢ we have

C=1log 3 - % log 2 - % log 3 - % log 6

Suppose the symbols fall into several groups such
that the noise never causes a symbol in one group to be mis-
taken for a symbol in another group. Let the capacity for
the nth group be Cn when we only use the symbols in this group.
Then it is easily shown that for best use of the entire set,
the total probability Pn of all symbols in the nth group
should be

Within a group the probability is distributed just as it would
be if these were the only symbols being used. The channel

capacity is
C
C=1log 527,
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17. An Example of Efficient Coding

The following example, although somewhat unrealistic,
is a case in which exact matching to a noisy channel is possible,
There are two channel symbols, O and 1, and the noise affects
them in blocks of seven symbols, A block of seven is either
transmitted without error, or exactly one symbol of the seven
is incorrect., These eight possibilities are equally likely.

We have

C = Max [H(y) - H_(y)]

oo) | )

=-% {7 +f§'log

= é]t bits/symbol

An efficient code, allowing complete correction of errors, and

transmitting at the rate C is the following (found by a method
due to R. Hamming).

Let a block of seven symbols be X;, 45, ses X7. of
these X3, X5, Zg and 4; are message symbols and chosen arbitrarily
by the source. The other three are redundant and calculated
as follows:

Xh is chosen to make a = Xh + X5 + Xg + X7 even
X, *© " i " B=X + X, + Xé + 37 "

2 L >

X it i W " ),-_»X + X. + X + X "

1 3 5 7

When a block of seven is received, a, B and y are calculated and
if even called zero, if odd called one. The binary number a B y
then gives the subscript of the Xi that is incorrect (if O there

was no error)e.

C. E. SHANNON




APPENDIX 1

The Growth of the Number of Blocks of Symbols lith
.. _"inite dtate Condition

Let Nj(L) be the number of blocks of symbols of length

L ending in state i, Then ve have

. _ . (s)
hj(L) = ig Ni(L - oij )

1 2 m
where bij’ bij’ eoe blj

be chosen in state i and lead to state J.

are the lengths of the symbols which may

These are linear dif-
ference equations and the tehavior as L — o must be of the type
L

Nj = AJW

Substituting in the cifference equation

(s)

awk = 3 A b
] i,s
: (s)
or
-bij
A.= Z A: W
J is 1
(s)
z (Z U- 1] 5: ) 0
y - B.:) 4, =
i s +J 1




must vanish and this determines !, which is, of course, the
largest resl root of D = O,

The quantity C is then given by

log Z A. UL
C = Lim J

L-co L

= log W

and we also note that the same growth properties result if we
require that all blocxs start in the same {arbitrarily chosen)

state.




APPENDIX 2

Derivation of 4 = -Z py log pj

11
n*n’
can decompose a choice from s™ equally likely possibilities into

Let H( covy %) = i(n). From condition (3) we

a series of m choices eacn from s egually likely possibilities

and obtain

By = m A(s)

A s

Similarly

A (™) = n A(t)

YJe can choose n arbitrarily lerge and find an m to satisfy
s™ < t? < s(m +1)

Thus, taking logarithms end dividing by a log s,

@-(Leg—-t—<rﬁ+£or Q-lg-g—t— ‘<€
n-=yjlogs=-—™n n N log s

where € is arbitrarily small.

How from the .ionotonic property of “(n)

n m+l

) < A(s 7))

Als™ < alt

m A(s) < ni{t) < (m + 1) A(s)

Hence, dividing by n./(s)
9 3




n __(_li\&:<§3_+ .]:.or Q-Mt‘ < E
n=a(s) —n n n o A(s)

Alt) _logt |« 2¢€e Alt) = =K logt
I Als og S l -

where K must be positive to satisfy (2).

Now suppose we have a choice from n possibilities with commeasurable
v i s nj . .
probabilities Pi = no where the n, are integers. ‘e can break

i
down a choice from Zni possikilities into a choice from n

possibilities with probabilities P; +.. Py @nd then, if the ith
was chosen, a choice from ny with egqual probabilities. Using
condition 3 again, we equ&ate the total choice from Zni as computed

by two methods

Hence
H=£K [Z p; log z n, - I p; log ni}
nj
= =¥ ¥ o —— =
XK Z p; log Zn, K 2 p; log p;

If the p; are incomuieasurable, they may be zpproximated by

rationals and the same expression must hold by our continuity
assumption. Thus the expression holds in zeneral. The choice
of coefficient X is a matter of convenience and amounts to the

choice of a unit of measure,




APPEIDIX 3

Theorems on Ergodic Sources

If it is possible to -o fror: any state with P> 0
to any other along a path of probability p > 0, the system is
ergodic and the strong law of large numbers can be applied.
Thus the number of times a siven path Pi j in the network is
traversed in a long sequence of length N is about proportional
to the probability of being at i and then choosing this path,
PipijN‘ If N is large enough the probability of percentage
error £ ® in this is less than € so that for all but a set of
small probability the actual nunbers lie within the limits

(Pip,; * 3)N

1j

Hence nearly all sequences have a probability p given by

(P.p.. * 8)N
p=1p, . s
log p . -
and X is limited by
lo = ¥ .
E P ZgPlpiJ t 8)log pjj
N
or
log p -
~—§—E - 2 Ppislog pyy | <m

This proves thecrem 3,



Theorein ,, follows immediately from this on calculating
upper and lower bounds for n{q) based on the possible range of
values of p in Theorem 3.

In the mixed {not ergodic) case if

L =21 Py Li

and the entropies of the components are Hl >2H_ 2> eee 2 H

2 n

we have the
Theorems Lim LogN (a) . ¢{a) is & decreasing step function,

N — oo

) s-1 S
¢(q) = Hg in the interval %pi < g< %pi
To prove theorems 5 and 6 first note that Fy is

monotonic decreasing because increasing i adds a subscript to a
conditional entropy. A simple substitution for pBi(sj) in the

definition of FN shows that

=N - -
FN N GN (N-1) GN-l

and summing this for all N gives Gy = % Z Fy. Hence Gy 2> FN

and Gy wmonatonic decreasing. Also they rmust approach the same

limit. By using theoren 3 we see that Lim GM = H,
N—00
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LPPENDIX 4

Haximizing the Rate for a System of Constraints

Suppose we have a set of constraints on sequences of
symbols that is of the finite state tyne and can be represented
therefore by a linear ~raph. Let Lij be the lengths of the |
various symbols that can occur in passing from state i to state
J. "hat distribution of probabilities Py for the different
states and pij for choosing symbol s in state i and going to
state j meximize the rate of generating information under these
constraints? The constraints define a discrete channel and the
maximum rate must be less than or equal tc the capacity C of
this channel, since if all blocks of large length were equally
likely this rate would result, and if possible this would be
best. ‘e will show that this rate can be achieved by proper
choice of the P and pi(

The r;te in question is

J)e

o (s) S
-2 Plpij log pij N
M
(s) ,s
ZP 1. .
(1)P15 713
0 S .. . s S
Let £4.. =2 4., . Lvidently for 2 maximum p. =k exp L, . .
1) s 1J ij i
The constraints on maximization are 2 Pi = 1. Z pij =1
J




Hence we maximize

) -ZPipijleg pié_

U P ) +l.§ Pi + Znipij*ﬂqui(pij-Bij)
iPij¥ij
Fq 1,
oy WP Urdee pyy) NP
3y, 2 SRR
ij M

Solving for P;

J
4.
= A4 1')
pij Ji Bj D
Since 2
-1 -4 .
Sp..=1, A =3 B.D *J
j id i 5
B D-£ij
p.s = 3
13 ‘£is
Z BgD
S

of )
B =3 B.C 9
i J
for then X
P:: = Edi C-*’i‘]
iJ B.
i
B, -1,
1Py = ¢ Y=p
B.

The correct value of D is the capacity C and the Bj are solutions



Hence we maximize

) -ZPipijleg pié_

U P ) +l.§ Pi + Znipij*ﬂqui(pij-Bij)
iPij¥ij
Fq 1,
oy WP Urdee pyy) NP
3y, 2 SRR
ij M

Solving for P;

J
4.
= A4 1')
pij Ji Bj D
Since 2
-1 -4 .
Sp..=1, A =3 B.D *J
j id i 5
B D-£ij
p.s = 3
13 ‘£is
Z BgD
S

of )
B =3 B.C 9
i J
for then X
P:: = Edi C-*’i‘]
iJ B.
i
B, -1,
1Py = ¢ Y=p
B.

The correct value of D is the capacity C and the Bj are solutions



or
N
P ’f/" P’
r 7=c Yo
i By
Jo that if Y4 satisfy
./?--
Z}'iC ='}’J.
Py =By iy
Both of the sets of equations for 5 and 17 can be satisfied
since C is such that
L. .
1] =
In this case the rate is
B: =L
—l i3
) Zpipij log By C
2 1pij ij
Bi_
Z Py Pj j log By
= - L
2 Py Pij Yy
but
. B, - c B.j
z Pi pij(log 3 logc Bl;
- =P, logB -2P logB_ =0

3 J i i

Hence the rate is C and as tnis could never be exceeded this is

the maximum, justifying the assumed solution.

C. E. SHANNON
April 21, 1948
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