Michael Eggleston

Murray Hill, NJ, USA
Data & Devices Group Leader

Research Interests


Michael S. Eggleston received his B.S. degree in Electrical Engineering and Physics from Iowa State University and his Ph.D. in Electrical Engineering from UC Berkeley. In 2015, he joined Nokia Bell Labs in Murray Hill, NJ where he currently leads the Data and Devices Group. An optical device physicist at heart, Michael’s research has included investigation into ultra-wideband wireless technologies, solar cells, environmental sensing, optical coherence tomography, low-power optical interconnects and devices, and integrated multi-wavelength lasers. His current research interests include battery-less sensing, non-invasive biochemical monitoring, and human-machine interfaces


PhD, Electrical Engineering, University of California, Berkeley, 2015.
BS, Electrical Engineering and Physics (double majors), Iowa State University, 2009.

Selected articles and publications

Select Blogs and Public Talks:
“Introducing Homo augmentus”. Bell Labs Blog, 2020. (link)
“Can novel optical sensors detect the next pandemic?”. Bell Labs Blog, 2020. (link)
“Remote physiological sensing and the era of Homo augmentus”, TEDx Naperville, 2020. (link)


Selected Publications:
Low-cost Electrothermally Actuated MEMS Mirrors for High-speed Linear Raster Scanning
B. Samanta, F. Pardo, T Salamon, R. Kopf, M. S. Eggleston, Optica, 2022.

Surface Electromyography as a Natural Human-Machine Interface: A Review
M. Zheng, M. Crouch, M. S. Eggleston, arXiv preprint, 2021.

Microparticle-based Biochemical Sensing using OCT and Deep Learning 
S. Shah, C. N. Yu, M. Zheng, H. Kim, M. S. Eggleston, ACS Nano, 2021.

ComFeel: Productivity is a Matter of the Senses Too
M. Costantinides, S. Scepanovic, D. Quercia, H. Li, U. Sassi, M. S. Eggleston, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2020.

Silicon Photonics Enabled Hyper-wideband RF Receiver With >85% Instantaneous Bandwidth
M. S. Eggleston, et. al, Journal of Selected Topics in Quantum Electronics, 2018.

Ultra-Fast Spontaneous Emission from an Optical Antenna-coupled WSe2 Monolayer
M. S. Eggleston, S. Desai, K. Messer, S. Madhvapathy, J. Xiao, S. A. Fortuna, X. Zhang, E. Yablonovitch, A. Javey, M. C. Wu, ACS Photonics, 2018.

Integrated Hybrid Wavelength-Tunable III–V/Silicon Transmitter Based on a Ring-Assisted Mach–Zehnder Interferometer Modulator
G de Valicourt, CM Chang, J Lee, M. S. Eggleston, et. al., Journal of Lightwave Technology, 2017.

Photonic integrated circuit based on hybrid III–V/silicon integration
G de Valicourt, CM Chang, M. S. Eggleston, et. al., Journal of Lightwave Technology. 2017.

Hybrid integrated wavelength and reflectivity tunable III-V/Silicon transmitter
G. de Valicourt, C. M. Chang, M. S. Eggleston et al., Journal of Lightwave Technology, 2017.

Metal Optics Based nanoLEDs: In Search of a Fast, Efficient, Nanoscale Light Emitter
M. S. Eggleston, Ph.D. Dissertation. University of California, Berkeley, 2015.

Efficient Coupling of an Antenna-Enhanced nanoLED into an Integrated InP Waveguide
M. S. Eggleston and M. C. Wu, Nano Letters, May 2015.

Optical Antenna Enhanced Spontaneous Emission
M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, Proceedings of the National Academy of Sciences, Feb. 2015.

Engineering Light Outcoupling in 2D Materials
D.-H. Lien, J. S. Kang, M. Amani, K. Chen, M. Tosun, H.-P. Wang, T. Roy, M. S. Eggleston, M. C. Wu, M. Dubey, S.-C. Lee, J.-H. He, and A. Javey, Nano Letters, Feb. 2015.


Granted Patents

US10038301B1: Hybrid mode-locked laser with tunable number of comb lines

US20180302167A1: Increasing fabry-perot cavity free spectral range in hybrid lasers

US10295847B1: Dual-drive push-pull optical modulator with electrical common-mode suppression

US10840672B2: Mode-locked semiconductor laser capable of changing output-comb frequency spacing