Pilot Contamination is Not a Fundamental Asymptotic Limitation in Massive MIMO

  • Bjornson E.
  • Hoydis J.
  • Sanguinetti L.

Massive MIMO provides great improvements in spectral efficiency, by coherent combining over a large antenna array and by spatial multiplexing of many users. Since its inception, the coherent interference caused by pilot contamination has been believed to be an impairment that does not vanish, even with an unlimited number of antennas. In this work, we show that this belief is incorrect and it is basically an artifact from using simplistic channel models and combining schemes. We prove that with multi-cell MMSE combining, the spectral efficiency grows without bound as the number of antennas increases, even under pilot contamination, under a condition of linear independence between the channel covariance matrices. This condition is generally satisfied, except in special cases which can be hardly found in practice.

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...