August 01, 2017

TinySet-An Access Efficient Self Adjusting Bloom Filter Construction

Bloom filters are a very popular and efficient data structure for approximate set membership queries. However, Bloom filters have several key limitations as they require 44% more space than the lower bound, their operations access multiple memory words, and they do not support removals. This paper presents TinySet, an alternative Bloom filter construction that is more space efficient than Bloom filters for false positive rates smaller than 2.8%, accesses only a single memory word and partially supports removals. TinySet is mathematically analyzed and extensively tested and is shown to be fast and more space efficient than a variety of Bloom filter variants. TinySet also has low sensitivity to configuration parameters and is therefore more flexible than a Bloom filter.

View Original Article

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...