August 14, 2017

Low-Density Code-Domain NOMA: Better Be Regular

  • Shamai (Shitz) S.
  • Shental O.
  • Zaidel B.

A closed-form analytical expression is derived for the limiting empirical squared singular value density of a channel transfer matrix corresponding to sparse low-density code-domain (LDCD) non-orthogonal multiple-access (NOMA) with regular random user-resource allocation. The derivation relies on associating the channel transfer matrix with the adjacency matrix of a large semi-regular bipartite graph. For a simple repetition-based sparse spreading scheme, the result directly follows from a rigorous analysis of spectral measures of infinite graphs. Turning to random (sparse) binary spreading, we harness the cavity method from statistical physics, and show that the limiting spectral density coincides in both cases. This result is then used to compute the normalized input-output mutual information of the underlying vector channel in the large-system limit. The latter may be interpreted as the achievable total throughput per dimension with optimum processing in a corresponding multiple-access channel setting or, alternatively, in a fully-symmetric broadcast channel setting with full decoding capabilities at each receiver. Surprisingly, the total throughput of regular LDCD-NOMA is found to be not only superior to that achieved with irregular user-resource allocation, but also to the total throughput of dense randomly-spread NOMA, for which optimum processing is computationally intractable. In contrast, the superior performance of regular LDCD-NOMA can be potentially achieved with a feasible message-passing algorithm. This observation may advocate applying regular, rather than irregular, LDCD-NOMA in 5G cellular physical layer design.

View Original Article

Recent Publications

January 01, 2018

Fair Dynamic Spectrum Management for QRD-Based Precoding with User Encoding Ordering in Downstream G.fast Transmission

In next generation DSL networks such as G.fast, employing discrete multi-tone transmission in high frequencies up to 212 MHz, the crosstalk among lines reaches very high levels. To precompensate the crosstalk in downstream transmission, QRD-based precoding has been proposed as a near-optimal dynamic spectrum management (DSM) technique. However, the performance ...

January 01, 2018

Practical Mitigation of Passive Intermodulation in Microstrip Circuits

This paper presents new experimental evidence and a novel practical approach for mitigation of passive intermodulation (PIM) in microstrip circuits fabricated on commercial printed circuit board laminates. The mechanisms of distributed PIM in microstrip circuits are reviewed and a phenomenology of PIM generation due to locally enhanced electromagnetic fields at ...

January 01, 2018

Efficient Cooperative HARQ for Multi-Source Multi-Relay Wireless Networks

In this paper, we compare the performance of three different cooperative Hybrid Automatic Repeat reQuest (HARQ) protocols for slow-fading half-duplex orthogonal multiple access multiple relay channel. Channel State Information (CSI) is available at the receiving side of each link only. Time Division Multiplexing is assumed, where each orthogonal transmission occurs ...