May 04, 2017

Towards edge-caching for image recognition

With the available sensors on mobile devices and their improved CPU and storage capability, users expect their devices to recognize the surrounding environment and to provide relevant information and/or content automatically and immediately. For such classes of real-time applications, user perception of performance is key. To enable a truly seamless experience for the user, responses to requests need to be provided with minimal user-perceived latency. Current state-of-the-art systems for these applications require offloading requests and data to the cloud. This paper proposes an approach to allow users' devices and their onboard applications to leverage resources closer to home, i.e., resources at the edge of the network. We propose to use edge-servers as specialized caches for image-recognition applications. We develop a detailed formula for the expected latency for such a cache that incorporates the effects of recognition algorithms' computation time and accuracy. We show that, counter-intuitively, large cache sizes can lead to higher latencies. To the best of our knowledge, this is the first work that models edge-servers as caches for compute-intensive recognition applications.

View Original Article

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...