February 01, 2017

Coding for Caching in 5G Networks

  • Barone D.
  • Fadlallah Y.
  • Gorce J.
  • Llorca J.
  • Tulino A.
  • Vettigli G.

One of the major goals of the 5G technology roadrnap is to create disruptive innovation for the efficient use of the radio spectrum to enable rapid access to bandwidth-intensive multimedia services over wireless networks. The biggest challenge toward this goal lies in the difficulty in exploiting the multicast nature of the wireless channel in the presence of wireless users that rarely access the same content at the same time. Recently, the combined use of wireless edge caching and coded multicasting has been shown to be a promising approach to simultaneously serve multiple unicast demands via coded multicast transmissions, leading to order-of-magnitude bandwidth efficiency gains. I lowever, a crucial open question is how these theoretically proven throughput gains translate in the context of a practical implementation that accounts for all the required coding and protocol overheads. In this article, we first provide an overview of the emerging caching-aided coded multicast technique, including state-of-the-art schemes and their theoretical performance. We then focus on the most competitive scheme proposed to date and describe a fully working prototype implementation in CorteXlab, one of the few experimental facilities where wireless multiuser communication scenarios can be evaluated in a reproducible environment. We use our prototype implementation to evaluate the experimental performance of state-of-the-art caching-aided coded multicast schemes corn pared to state-of-the-art uncoded schemes, with special focus on the impact of coding computation and communication overhead on the overall bandwidth efficiency performance. Our experimental results show that coding overhead does not significantly affect the promising performance gains of coded multicasting in small-scale real world scenarios, practically validating its potential to become a key next generation CG technology.

View Original Article

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...