January 01, 2017

Survey of Photonic Switching Architectures and Technologies in Support of Spatially and Spectrally Flexible Optical Networking {[}Invited]

  • Colbourne P.
  • D'Errico A.
  • Fontaine N.
  • Ikuma Y.
  • Marom D.
  • Proietti R.
  • Rivas-Moscoso J.
  • Tomkos I.
  • Zong L.

As traffic volumes carried by optical networks continue to grow by tens of percent year over year, we are rapidly approaching the capacity limit of the conventional communication band within a single-mode fiber. New measures such as elastic optical networking, spectral extension to multi-bands, and spatial expansion to additional fiber overlays or new fiber types are all being considered as potential solutions, whether near term or far. In this tutorial paper, we survey the photonic switching hardware solutions in support of evolving optical networking solutions enabling capacity expansion based on the proposed approaches. We also suggest how reconfigurable add/drop multiplexing nodes will evolve under these scenarios and gauge their properties and relative cost scalings. We identify that the switching technologies continue to evolve and offer network operators the required flexibility in routing information channels in both the spectral and spatial domains. New wavelength-selective switch designs can now support greater resolution, increased functionality and packing density, as well as operation with multiple input and output ports. Various switching constraints can be applied, such as routing of complete spatial superchannels, in an effort to reduce the network cost and simplify the routing protocols and managed pathway count. However, such constraints also reduce the transport efficiency when the network is only partially loaded, and may incur fragmentation. System tradeoffs between switching granularity and implementation complexity and cost will have to be carefully considered for future high-capacity SDM-WDM optical networks. In this work, we present the first cost comparisons, to our knowledge, of the different approaches in an effort to quantify such tradeoffs.

View Original Article

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...