A NONPARAMETRIC VALLEY-SEEKING TECHNIQUE FOR CLUSTER ANALYSIS.

  • Fukunaga K.
  • Koontz W.

The problem of clustering multivariate observations is viewed as the replacement of a set of vectors with a set of labels and representative vectors. A general criterion for clustering is derived as a measure of representation error. Some special cases are derived by simplifying the general criterion. A general algorithm for finding the optimum classification with respect to a given criterion is derived. For a particular case, the algorithm reduces to a repeated application of a straightforward decision rule which behaves as a valley-seeking technique. Asymptotic properties of the procedure are developed. Numerical examples are presented for the finite sample case.

View Original Article

Recent Publications

May 01, 2019

Digital networks at the nexus of productivity growth

  • Kamat S.
  • Prakash S.
  • Saniee I.
  • Weldon M.

This paper takes a fresh look at the debate over the relationship between digital technology and productivity. The argument of economic historian Robert J. Gordon is that digital technology will not lead to increases in productivity such as we saw in the last century, based on his analysis of the ...

January 01, 2019

Friendly, appealing or both? Characterising user experience in sponsored search landing pages

  • Bron M.
  • Chute M.
  • Evans H.
  • Lalmas M.
  • Redi M.
  • Silvestri F.

© 2017 International World Wide Web Conference Committee (IW3C2), published under Creative Commons CC BY 4.0 License. Many of today's websites have recognised the importance of mobile friendly pages to keep users engaged and to provide a satisfying user experience. However, next to the experience provided by the sites themselves, ...

January 01, 2019

Analyzing uber's ride-sharing economy

  • Aiello L.
  • Djuric N.
  • Grbovic M.
  • Kooti F.
  • Lerman K.
  • Radosavljevic V.

© 2017 International World Wide Web Conference Committee (IW3C2), published under Creative Commons CC BY 4.0 License. Uber is a popular ride-sharing application that matches people who need a ride (or riders) with drivers who are willing to provide it using their personal vehicles. Despite its growing popularity, there exist ...