February 06, 2017

28 GHz and 3.5 GHz Wireless Channels: Fading, Delay and Angular Dispersion

  • Calin D.
  • Kaya A.
  • Viswanathan H.

We employ a ray tracing framework to extract the three dimensional (3D) channel parameters characterizing outdoor small cell deployments providing services to indoor users close to the exterior wall and windows at 28 GHz and 3.5 GHz. The wireless channel is highly dependent on 3D antenna patterns, the environment specific characteristics such as 3D geometry of the buildings, materials used for building construction and their specific propagation properties. These dependencies are particularly important at higher frequencies, where the range of radio signals may be significantly limited due to the path loss and shadowing by obstacles. A good understanding of the channel propagation characteristics at these frequencies, and their correlation to propagation at lower bands, is thus critical for designing and deploying reliable radio systems. The ray tracing approach has substantial merits in absence of relevant field measurements, facilitating extraction of the 3D site-specific channel parameters pertaining to 28 GHz small cell deployments and giving useful insights to foster innovation of new wireless technologies at 28 GHz. Furthermore, we derive channel statistics at both 28 GHz and 3.5 GHz for the same environment drawing conclusions on path loss, delay spread, and angle spread in azimuth and vertical directions. Our results indicate that for the environment considered the angle spread of azimuth angle of arrival exceeds 20° in more than 45% of the terminal locations even at 28 GHz, suggesting that very high beamforming gain at the terminal is not feasible. Furthermore, with a 15° grid of beams based transmitted signal, the best beam at 28 GHz is different from that 3.5 GHz for almost 60% of the locations.

View Original Article

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...