February 14, 2016

Multi-user computation offloading as Multiple Knapsack Problem for 5G Mobile Edge Computing

  • Farkas L.
  • Kecskes L.
  • Ketyko I.
  • Nemes C.

We present an overview of NP-hard problems and methods related to deployment, resource sharing, load balancing and fairness among multiple users in 5G mobile networks. We provide a general model of the system considering the E2E computational latency of Mobile Edge Computing (MEC) applications. An evaluation of a multi-user MEC offloading model reducible to the Multiple Knapsack Problem (MKP) is performed. We study the behaviour of an exact and a heuristic algorithm. We also show the performance results of these in a real-life small-cell deployment scenario.

View Original Article

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...