When Base Stations Meet Mobile Terminals, and Some Results Beyond

  • Fettweis G.
  • Suryaprakash V.

Wireless networks are designed based on population patterns. To densify networks, the organization of a cellular network is, therefore, done according to user density to minimize the cost of investment. Since populations do not appear in the form of a regular geometric grid, the planning of networks should not either. Instead, a two-dimensional Poisson process is believed to be a good match of reality. This has been the basis for groundbreaking work by various researchers showing how stochastic geometry based on independent Poisson point processes can be applied. However, to minimize cost and maximize capacity, cellular networks are densified wherever the user density is high. Hence, modelling users and base stations as independent Poisson processes does not match reality, but instead, generates “worst case” scenarios and therefore, weak lower bounds. Instead, the user and base station processes must reflect this correlation to be able to model reality suitably. In this talk, we shall describe our efforts towards realizing this goal. During our investigations, we find that using a Neyman-Scott process to model users clustered around base stations could be a viable alternative. When densifying cellular networks even further, a hierarchy of cells is used, i.e. micro base stations are placed where capacity hot spots appear. Once again, correlating one process with the other (i.e. introducing a correlation among the base station processes) is pivotal for capturing reality accurately. To this end, we shall talk about our work on models using stationary Poisson cluster processes and how they can be used to study such networks. Lastly, if time permits, we then will also talk about linear algebra and matrix theory; hopefully extending the view of what is known today.

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...