March 20, 2017

Nonlinear Fourier transform for optical data processing and transmission: Advances and perspectives

  • Jaroslaw E. Prilepsky
  • Leonid L. Frumin
  • Morteza Kamalian
  • Sander Wahls
  • Sergei K. Turitsyn
  • Stanislav A. Derevyanko
  • Thai Le S.

Fiber-optic communication systems are nowadays facing serious challenges due to fast growing demand on capacity from various new applications and services. It is now well recognised that nonlinear effects limit the spectral efficiency and transmission reach of modern fiber-optic communications. Nonlinearity compensation is therefore widely believed to be of paramount importance for increasing the capacity of future optical networks. Recently, there has been a steadily growing interest in the application of a powerful mathematical tool the nonlinear Fourier transform (NFT) in the development of fundamentally novel nonlinearity mitigation tools for fiber-optic channels. It has been recognized that, within this paradigm, nonlinear cross-talk is effectively absent and that the fiber nonlinearity can enter as a constructive element rather than a degrading factor. The novelty and the mathematical complexity of the NFT, the versatility of the proposed system designs, and the lack of a unified vision of an optimal NFT-type communication system however constitute significant difficulties for communication researchers. In this paper, we therefore survey the existing approaches in a common framework and review the progress in this area with a focus on practical implementation aspects. First, an overview of existing key algorithms for the efficacious computation of the direct and inverse NFT is given, and the issues of accuracy and numerical complexity are elucidated. We then describe different approaches for the utilization of the NFT in practical transmission schemes. After that we discuss the differences, advantages and challenges of various recently emerged system designs employing the NFT, and the efficiency estimation available up to date. With many practical implementation aspects still being open, our mini-review is aimed at helping researchers to assess the perspectives, understand the bottle-necks, and envision the development paths in the upcoming of NFT-based transmission technologies.

View Original Article

Recent Publications

May 22, 2017

Multidimensional Resource Allocation in NFV Cloud

  • Goldstein M.
  • Raz D.
  • Segall I.

Network Function Virtualization (NFV) is a new networking paradigm in which network functionality is implemented on top of virtual infrastructure deployed over COTS servers. One of the main motivations for the shift of telco operators into this paradigm is cost reduction, thus the efficient use of resources is an important ...

May 20, 2017

The Actual Cost of Software Switching for NFV Chaining

  • Caggiani Luizelli M.
  • Raz D.
  • Saar Y.
  • Yallouz J.

Network Function Virtualization (NFV) is a novel paradigm allowing flexible and scalable implementation of network services on cloud infrastructure. An important enabler for the NFV paradigm is software switching, which needs to satisfy rigid network requirements such as high throughput and low latency. Despite recent research activities in the field ...

May 08, 2017

Coexistence-aware dynamic channel allocation for 3.5 GHz shared spectrum systems

The paradigm of shared spectrum allows secondary devices to opportunistically access spectrum bands underutilized by primary owners. As the first step, the FCC targeted sharing the 3.5 GHz (3550–3700 MHz) federal spectrum with commercial systems. The proposed rules require a Spectrum Access System to implement a three-tiered spectrum management framework, ...