March 13, 2017

SleepTalker: A ULV 802.15.4a IR-UWB Transmitter SoC in 28-nm FDSOI Achieving 14 pJ/b at 27 Mb/s With Channel Selection Based on Adaptive FBB and Digitally Programmable Pulse Shaping

  • Bol D.
  • Cathelin A.
  • De Streel G.
  • Durant F.
  • Frenkel C.
  • Gurne T.
  • Stas F.

Achieving wireless communications at 5-30 Mb/s in energy-harvesting Internet-of-Things (IoT) applications requires energy efficiencies better than 100 pJ/b. Impulse-radio ultrawideband (UWB) communications offer an efficient way to achieve high data rate at ultralow power for short-range links. We propose a digital UWB transmitter (TX) system-on-chip (SoC) designed for ultralow voltage in 28-nm FDSOI CMOS. It features a PLL-free architecture, which exploits the duty-cycling nature of impulse radio through aggressive duty cycling within the pulse modulation time slot for high energy efficiency and minimum jitter accumulation. Wide-range on-chip adaptive forward back biasing is used for threshold voltage reduction, PVT compensation, and tuning of both the carrier frequency and the output power. To ensure spectral compliance with output power regulations without the use of bulky and expensive off-chip filters, a programmable pulse-shaping functionality is integrated in the digital power amplifier based on a 7-9-GS/s, 5-b current DAC. Operated at 0.55 V, it achieves a record energy efficiency of 14 pJ/b for the TX alone and 24 pJ/b for the complete SoC with embedded power management. The TX SoC occupies a core area of 0.93 mm².

View Original Article

Recent Publications

May 22, 2017

Multidimensional Resource Allocation in NFV Cloud

  • Goldstein M.
  • Raz D.
  • Segall I.

Network Function Virtualization (NFV) is a new networking paradigm in which network functionality is implemented on top of virtual infrastructure deployed over COTS servers. One of the main motivations for the shift of telco operators into this paradigm is cost reduction, thus the efficient use of resources is an important ...

May 20, 2017

The Actual Cost of Software Switching for NFV Chaining

  • Caggiani Luizelli M.
  • Raz D.
  • Saar Y.
  • Yallouz J.

Network Function Virtualization (NFV) is a novel paradigm allowing flexible and scalable implementation of network services on cloud infrastructure. An important enabler for the NFV paradigm is software switching, which needs to satisfy rigid network requirements such as high throughput and low latency. Despite recent research activities in the field ...

May 08, 2017

Coexistence-aware dynamic channel allocation for 3.5 GHz shared spectrum systems

The paradigm of shared spectrum allows secondary devices to opportunistically access spectrum bands underutilized by primary owners. As the first step, the FCC targeted sharing the 3.5 GHz (3550–3700 MHz) federal spectrum with commercial systems. The proposed rules require a Spectrum Access System to implement a three-tiered spectrum management framework, ...