March 20, 2017

Low-Latency Communications in LTE Using Spatial Diversity and Encoding Redundancy

  • Claussen H.
  • Kucera S.
  • Yu Yu
  • Yuto Lim

Control of data delivery latency in wireless mobile networks is an open problem due to the inherently unreliable and stochastic nature of wireless channels. This paper explores how the current best-effort throughput-oriented wireless services could be evolved into latency-sensitive enablers of new mobile applications such as remote 3D graphical rendering for interactive virtual/augmented-reality overlay. Assuming that the signal propagation delay and achievable throughput meet the basic latency requirements of the user application, we examine the idea of trading excess/federated bandwidth for the elimination of non-negligible data re-ordering delays, caused by temporal transmission failures and buffer overflows. The general system design is based on (i) spatially diverse data delivery over multiple paths with uncorrelated outage likelihoods, and (ii) packet-level forward error correction, creating encoding redundancy for proactive recovery of intolerably delayed data without end-to-end re-transmissions. Performance evaluation and analysis is based on traces of real-life traffic in live carrier-grade LTE networks.

View Original Article

Recent Publications

May 22, 2017

Multidimensional Resource Allocation in NFV Cloud

  • Goldstein M.
  • Raz D.
  • Segall I.

Network Function Virtualization (NFV) is a new networking paradigm in which network functionality is implemented on top of virtual infrastructure deployed over COTS servers. One of the main motivations for the shift of telco operators into this paradigm is cost reduction, thus the efficient use of resources is an important ...

May 20, 2017

The Actual Cost of Software Switching for NFV Chaining

  • Caggiani Luizelli M.
  • Raz D.
  • Saar Y.
  • Yallouz J.

Network Function Virtualization (NFV) is a novel paradigm allowing flexible and scalable implementation of network services on cloud infrastructure. An important enabler for the NFV paradigm is software switching, which needs to satisfy rigid network requirements such as high throughput and low latency. Despite recent research activities in the field ...

May 08, 2017

Coexistence-aware dynamic channel allocation for 3.5 GHz shared spectrum systems

The paradigm of shared spectrum allows secondary devices to opportunistically access spectrum bands underutilized by primary owners. As the first step, the FCC targeted sharing the 3.5 GHz (3550–3700 MHz) federal spectrum with commercial systems. The proposed rules require a Spectrum Access System to implement a three-tiered spectrum management framework, ...