March 20, 2017

Signalling Minimization Framework for Short Data Packet Transmission in 5G

  • Ambrosy A.
  • Aziz D.
  • Bakker H.
  • Liao Q.

Current cellular networks are mainly designed for the transmission of broadband packet payloads. Due to this, signalling mechanisms are inefficient for small packet payloads. Future trends predict an explosion of sporadic small packet transmissions due to machine type and always-ON type applications. Therefore, we target signalling minimization in 5G. In particular, we define user and service centric connection and mobility management by 5G radio access network (5G-RAN). The key idea is to anchor the core network connection for a user in 5G-RAN with the help of a user centric mobility area. This area is dynamically managed by 5G-RAN for each user. For a mobile user within this area, we minimize the core network signalling related to connection transitions, paging and handover. We present the performance assessment of our proposal with the help of simulations. The results show significant gains in terms of signalling reduction with respect to 4G-LTE approach.

View Original Article

Recent Publications

May 22, 2017

Multidimensional Resource Allocation in NFV Cloud

  • Goldstein M.
  • Raz D.
  • Segall I.

Network Function Virtualization (NFV) is a new networking paradigm in which network functionality is implemented on top of virtual infrastructure deployed over COTS servers. One of the main motivations for the shift of telco operators into this paradigm is cost reduction, thus the efficient use of resources is an important ...

May 20, 2017

The Actual Cost of Software Switching for NFV Chaining

  • Caggiani Luizelli M.
  • Raz D.
  • Saar Y.
  • Yallouz J.

Network Function Virtualization (NFV) is a novel paradigm allowing flexible and scalable implementation of network services on cloud infrastructure. An important enabler for the NFV paradigm is software switching, which needs to satisfy rigid network requirements such as high throughput and low latency. Despite recent research activities in the field ...

May 08, 2017

Coexistence-aware dynamic channel allocation for 3.5 GHz shared spectrum systems

The paradigm of shared spectrum allows secondary devices to opportunistically access spectrum bands underutilized by primary owners. As the first step, the FCC targeted sharing the 3.5 GHz (3550–3700 MHz) federal spectrum with commercial systems. The proposed rules require a Spectrum Access System to implement a three-tiered spectrum management framework, ...