

Core Optical Networking & Transmission Working Group Overview

Christian Dorize Co-Chair, CONT WG

GreenTouch : Seattle Meeting | 17 November 2011

© 2011 GreenTouch Consortium

CONT WG Focus

With the term "optical networking" we denote high-capacity telecommunications networks based on optical technologies and components that provide the functionality of routing, grooming and restoration at the wavelength level as well as wavelength-based services provisioning. The Core Optical Networking and Transmission Working Group covers topics related to the Metro and Long Haul segments of a transport network. Focusing on the particular network segments, all wavelength-related (Layer 1) operations fall inside the activities of the WG. Such areas may include but are not limited to:

- optical transport/transmission systems,
- optical network elements and sub-systems,
- optical circuit switching and wavelength switching,
- survivability, reliability, and security of optical networks,
- interfacing of the wavelength transport/switching elements to the control plane,
- optical communication components and devices,
- coding and forward error correction in optical systems,
- architecture of fiber, free-space, and hybrid optical networks,
- transparency and all-optical networks,
- signalling and information models for optical network control and management,
- architectures, protocols, and algorithms for dynamic optical networks,
- operations support systems for optical networks,
- modelling and simulation of optical networks,
- advanced optoelectronic circuits and optical signal processing,
- quantum optical communication
- novel core transmission/communication technologies

Our WG vision

Energy Efficient WDM Architecture • Advanced transmission Zzzz • Fossil Fue technologies Vind Farm File Server Minimal opto-electronic • Advanced Transmission 7222 X Technologies conversions DNS Energy Aware Forwarding 000 Lightpath Bypas Energy Constrained RWA • Energy Efficient&Aware RWA Energy-enabled Control Plane for • File Server energy-aware operation • Give priority to all equipment that run on clean energy sources

Solar Panel

Data Center

Metropolitan networkenergy efficiency study introduction

- First issue: wide variety of metro networks
 - various topologies (ring, mesh, star,...)
 - Size (number of nodes and links, connection lengths,...)
 - Mode of WDM transportation (transparent, opaque)
 - WDM data rates

Our assumptions:

- topology and traffic based on an existing regional network (by courtesy of *France Telecom* operator)
- RWA based on an opaque transmission assumption to favor data merge (layer 2)
- 10Gbps capacity (and transponder devices) per WDM channel

Involved GT members: BL, IBBT, DCU, FT

Metropolitan networktopology & traffic assumptions

Topology:

- mesh, 44 nodes, 59 links (avg node connectivity degree=2.6)
- I fiber per link & per direction
- 300km between most distant nodes (avg node distance=39 km)
- 1 link=1 span=> No need for intermediate optical amplifier between nodes
- I interface node for connection to the long haul network
- Traffic matrix (layer 2 data rate here):

260Gbps overall routed traffic per direction that splits as follows:

- 250Gbps from/to long haul network
- 10Gbps local metro traffic

Metropolitan networkdata aggregation => better utilization of WDM channels

------: metro WDM link

XX Gbps : layer 2 accumulated data rate to/from core network

- Average amount of aggregated traffic per node: 23Gbps
- Overall number of 10Gbps transponders to handle the traffic: 124

WDM Network Energy Efficiency Model Adaptation to the Metro Network Case

$$Eff_{Metro_Optical}^{-1} = \eta_{pr}\eta_{c} \left(\frac{Power_{0}}{Capa} + \frac{Power_{1}}{Capa} \right)$$
[Unit: Watts/Gbps]

Network nodes contribution (cross-connect & transponder systems)

...Network-links-contribution... (Optical Line Amplifier systems)

No power contribution from links:

- η_c factor accounts for the energy consumption of the cooling and power supply at the operator site
- η_{pr} factor accounts for provisioning and for the protection paths of the connections used in network

=> What is needed? -> calculate Power₀ & Capa terms for the metropolitan network case

Metropolitan Network Case Power at the node stage (Power_{TR0})

1a - Cross-connect systems: Power consumption of electrical cross-connects for metro network derived from available manufacturer data sheets

see GT CONT data base for product data sheet references & links

Metropolitan Network Case Power at the node stage (Power_{TR0})

1b - Cross-connect systems:

 Assumption: opto-electronic conversion at each node to allow for data grooming => electrical cross-connects (XC)

OverallMetroXCPower = $N \cdot \tilde{C}apa_n \cdot PowerPerSwitchedGb + N \cdot PowerXCOverhead$

- PowerPerSwitchedGb: switched capacity dependent power
- N: the number of nodes in the network
- $\tilde{C}apa_n$: average switched capacity per node
- **PowerWDMCtrlPlane:** power contribution of the XC overhead

 $OverallMetroXCPower = 44 \cdot 23Gbps \cdot (4.6W/Gbps) + 44 \cdot 100W \approx 9.06kW$

Metropolitan Network Case Power at the node stage (Power_{TRO}) - 2

2 – Transponder systems:

$$OverallTspsPower_{r} = \sum_{n=1}^{N} TspsPower \approx N \cdot \widetilde{T}_{n} \cdot OverheadFactor_{r} \cdot PowerPerTransp_{r}$$

N: Nb of metro network nodes=44 \widetilde{T}_n : Avg nb of transponder cards per node=124/44=2.82 *OverheadFactor*. Power contribution factor of the transponder control board=1.4 *PowerPerTranspr*. Power per transponder card (*r*:10Gbps case)=34W

 $OverallTspsPower = 124 \cdot 1.4 \cdot 34W \approx 6kW$

Metro network energy efficiency estimation

$$Eff_{Metro_Optical}^{-1} = \eta_{pr}\eta_c \left(\frac{Power_{TR0}}{Capa_{TR0}}\right)$$

 $Power_{Metro_Optical} = \eta_{pr} \cdot \eta_c \cdot Power_{TR0} = 2 \cdot 2 \cdot (9.06kW + 6kW) \approx 60kW$

Capacity:

- Overall layer 2 routed traffic: 2x260=520Gbps
- Estimated average filling ratio of 10Gbps WDM channels: 83%^{*}
 => related gross WDM traffic: Capa_{TR0}=520/0.83=630Gbps
 (in practice, network would work under a lower utilisation assumption)

Final energy efficiency estimate for the metropolitan network physical layer:

$$Eff_{Metro_Optical}^{-1} = 60kW/630Gbps = 95W/Gbps^*$$

*: optimistic assumption

Core optical network energy efficiency update

First publication release exploring the power consumption of 100Gbps coherent transponder:

New estimation: 350W (previous guess, without data sheet inputs: 188W)											
	Component	Unit	TSP	Power dissipation (W)	Ref						
	Client side	Client-card	10	•	3.5	[7]					
		Framer	1	•	25	[8]					
	FEC	FEC	1	•	7	[9]					
Add/Drop transponder	E/O	Drivers	4	•	9	[10]					
	modulation	Laser (on-off)	1	•	6.6	[11]					
	O/E Receiver	Local oscillator	1	•	6.6	[11]					
Client- O WDM-		Photodiode + TIA	4	•	0.4	[12]					
		ADC	4	•	2	[13]					
		DSP	1	•	100	[13]					
	FEC	FEC	1	•	7	[9]					
	Client side	Deframer	1	•	25	[8]					
		Client-card	10	•	3.5	[7]					
		Management power		•	+20% total power	[12]					

From « Power Management of Optoelectronic Interfaces for Dynamic Optical Networks », A. Morea & al, ECOC 2011

351W

Total power

Optical network energy efficiency summary

- 1) Long haul network case
- New energy efficency estimation figure for 100Gbps WDM data rate based long haul network: 68W/Gbps
- This is equivalent to the estimation based on a basic 10Gbps WDM data rate based network
- switching from 10Gbps to 100 Gbps brings a factor 10 gain in optical network capacity but no gain according to current estimate in energy efficiency.
- 2) Metropolitan network case
- Energy efficiency estimation figure under above assumptions: 95W/Gbps

All additional details can be found in the new release of the « Green Touch CONT Report on Baseline Power consumption »

Note: W/Gbps figures here only include optical amplifiers, cross-connects and transponder systems (physical layer energy efficiency)

Equipment Models - Data collection

	A	В	С	D	E	F	G	Н	I	J	К	L	M	N	0	Р	Q
3	SDH / SONET	cross connects															
	Brand	Model	Year 1st	Remarks	Max Switching	Max Power	Typical Power	Тур / Мах	Inv. Efficiency	Link							
4			release		Capacity (Gbps)	Consumption (W)	Consumption (W)		(W/Gbps)								
5	Cisco	15600	2002		320	2800	2100		6.6	http://w	ww.cisco.o	om/en/U	S/prod/co	lateral/o	optical/ps	5724/ps45	33/prod
6	Ciena	CN3600	2006 ?		95	1200	850	71%	8.9	http://w	ww.ciena.	com/prod	lucts/3600	/technica	1/		
7	Sycamore	SN9000	2007		320	1200	1000	83%	3.1	www.sy	camorenet	. com/corp	oorate/col	lateral/P	B sn9000	gov.pdf	
8	Tejas	TJ1600 c		Vard VH: Seems more like a core product, see the diagram in the product	320	1200	900		2.8	http://w	ww.tejasn	etworks.	om/produ	icts mspj	5 TJ1600C	<u>html</u>	
9	Tejas	TJ1400		Less important equipment from Tejas	60	250	187.5		3.1	http://w	ww.tejasn	etworks.	:om/imag	es/Produc	t%20Brock	hures/teja	as xtn/tj
10																	
11					1												
12	Values missing																
13	Alactel Lucent	1660															
14	Alactel Lucent	1675															
15	Alactel Lucent	1678 MCC		Vard VH: Added because seems suitable, although no power values	640					http://w	ww.alcate	l-lucent o	om/wps/	portal/!ut	/p/kcml/	04 Sj9SPy	kssy0xPL
16																	
17	Not considered	(too old, or uncl	ear value	5)													
18	Tellabs	5500 ccs	1991	Matrix VC12, very old design	250	1720	1290		5.2	http://w	ww.tellab	s.com/pro	ducts/50	00/tlab550	0 ccs.pdf		
19	Force 10	Traverse 2000	<u>2002</u>	Not considered, as old matrix VC12 instead of VC4	95	1600	900	56%	9.5	http://w	ww.force1	0network	s.com/pro	ducts/pd	f/Force10	Traverse	DS.pdf
20	Force 10	Traverse 1600	2002	Not considered, as old matrix VC12 instead of VC4	75	1200	700	58%	9.3	http://w	ww.force1	0network	s.com/pro	ducts/pd	f/Force10	Traverse	DS.pdf
21	Force 10	Traverse 600	2002	Not considered, as old matrix VC12 instead of VC4	25	400	200	50%	8.0	http://w	ww.force1	0network	s.com/pro	ducts/pd	f/Force10	Traverse	DS.pdf
22	Tejas	TJ1610		E1 matrix, over sized : VC4 matrix	40	600	450		11.3	http://w	ww.tejasn	etworks.	.om/produ	ucts mspj	5 TJ1610.h	t <u>ml</u>	
23	Alcatel Lucent	1671-SC		Frank Smyth: Not told whether this is max or typ. Also, this includes switch only. Control shelf is further 341W and I/O	240	1246	934.5		3.9	http://w	ww.alcate	l-lucent o	om/wps/l	Document	Streamer	Servlet?LN	ASG CAE
24	Fujitsu	Flashwave 950	0	Frank Smyth: This is a packet optical convergence platform so may not fit in this grouping Vard VH: Indeed, doesn't really seem fit for metro. And is listed under the 'core networks' products from Fujitsu. So l've removed it from the chart	480	4200	800	19%	1.7	1.7 http://www.fujitsu.com/global/services/telecom/produ				m/produc	t/flashwa	ive-9500	
25																	
26																	
							1				1						

Data base has been updated - available to Green Touch members on Kavi

Involved GT members: IBBT, DCU, BL

Targets and Challenges

- (a) Achieve 5x improvement in reach-dependent power consumption, mostly of power amplifiers, including pump lasers, pump drivers, TEC's in amplifiers, better utilization of amplifiers through maximizing fiber capacity
- (b) Achieve 5x improved efficiency at nodes (including subwavelength, wavelength switches, transmitter electronics and control/management electronics)
- (c) Achieve 1.5x (prot.) improved efficiency using optical restoration and physical layer reconfiguration—applies to routers & switches as well
- (d) Achieve 4x network efficiency using dynamic optical networks enabling the reduction of overprovisioning (x2 e) and the adaptive powering of network elements (x2)
- (e) Achieve 1.5x improved efficiency with passively cooled equipment and advanced thermal management techniques
 - Nota: overall efficiency improvement: (a+b)*c*d*e

WG related Projects/demos under discussion

- Service Energy Aware Sustainable Optical Network project (SEASON)
 - Optimize application centers, dynamic optical transport using novel protocols and algorithms for most efficient delivery of high bandwidth services
 - Lab demonstration in year 3-4
- Half-Moon project
 - Optimize energy-efficiency of the optical layer through spectral efficiency adaptation, fast network reconfiguration and on-off capable devices
 - Lab demonstration in year 3-4
- Technology Demonstration: Energy Efficient Optical OFDM Networking (EFFICOST)
 - Lab transmission demonstration
 - Network Simulation analysis
 - Lab demonstration in 2012

SEASON: Architecting an Energy-Efficient Service-Centric Network Bell Labs, CEET, Columbia, INRIA, Toronto, UNSW

- SEASON is a clean-slate network design project focusing on opportunities to design networks for maximum energy efficiency through awareness of service requirements
 - Focus on services with high bandwidth
 - Elephant flow picture: 90% of traffic due to 10% of flows
 - Understand from clean-slate perspective how service requirements (bandwidth, duration, latency, multicast, security, protection,...) impact energy
 - Focus on core network dynamic functionality and connect with other groups and projects on transmission design, switching hardware

SEASON activities

- Dynamic wavelength switching: performance issues & efficiency benefits (BL, Columbia)
- Physical layer dynamics (BL, U. of Toronto)
- Energy efficient delivery of personalized media services (BL)
- Energy modeling of hybrid dynamic wavelength switched Networks (BL)
- SEASON reference network dimensioning (BL)
- SEASON project extension proposals:
 - Cross-layer scheduling algorithms and simulators (INRIA, BL, UNSW)
 - SEASON physical control dynamics (U. of Toronto, BL)
 - SEASON service protocol (BL, INRIA, UNSW)

Different Directions

HALF-MOON project status

Introduce smart sleep mode functionality inside transponders

North America and Europe Daily Traffic

http://asert.arbornetworks.com

- Enhancement of GMPLS protocols for enabling the power management of optoelectronic devices in the optical network
- Introduction of 3 power states: Up, Down and Idle
- Policy for the management of opto-electronic devices at different power states is introduced such as to guarantee a limited blocking ratio for high priority requests (gold class).

Result: 56% energy savings observed when comparing energy requirements for the network managed with the proposed GMPLS protocol enhancement versus current GMPLS protocol set.

EFICOST: Energy Efficient High Capacity OFDM Signal Transmission

- Participants: Prof. J. Leuthold (KIT), Prof. A. Ellis (DCU), Prof. I. Tomkos (AIT), Dr. D. Kilper (BL), Dr. W. Shieh (UM), Dr. Y. Ye (HT)
- Design and implementation of a energy efficient 400 Gb/s wavelength OFDM transmission system
 - Using power efficient combline generators at the transmitter
 - Using optical FFT circuitry at the receiver to de-multiplex 400 Gbit/s OFDM signals requiring negligible energy
 - Estimating the overall energy efficiency on the system and the network level

400 Gbit/s Optical OFDM Transmission Systems

Estimation of the overall network energy consumption

□ Techno-economical study

AIT + UM

CONT WG - Identification of research gaps

- Analog processing vs digital processing
- No activity on cooling / thermal management yet
- Reduction of optical reach versus WDM capacity increase in coherent optical transmission

Thank You

www.greentouch.org

© 2011 GreenTouch Consortium

GreenTouch : Seattle Meeting | 17 November 2011